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Abstract

Personal mobile devices hold a vast amount of private and sensitive data and
can e. g. be used to access services with associated cost. For security reasons,
most mobile platforms therefore implement automatic device locking after a
period of inactivity. Unlocking them using approaches like PIN, password or
an unlock pattern is both problematic in terms of usability and potentially
insecure, as it is prone to the shoulder surfing attack: an attacker watching
the display during user authentication. Hence, face unlock – using biometric
face information for authentication – was developed as a more secure as well
as more usable personal device unlock. Unfortunately, when using frontal
face information only, authentication can still be circumvented by a photo
attack: presenting a photo/video of the authorized person to the camera. In
this work we present a variant of face unlock which is harder to circumvent
than with using frontal face information only by using more facial informa-
tion, available during a 180∘ pan shot around the user’s head. We develop
and evaluate our mobile device pan shot face unlock in four different stages
in order to identify conceptual weaknesses and do improvements within the
next stage. In the first stage we present a proof-of-concept prototype based
on Android, which uses different Viola and Jones Haar-cascades for face de-
tection and Eigenfaces for face recognition. We identify Eigenfaces as being
insufficient for usage in a mobile device unlocking scenario. Therefore, we
utilize neural networks and support vector machines for face recognition in
the next stage, with which we identify using Viola and Jones based face
detection as being insufficient for usage in a mobile device pan shot unlock-
ing scenario based on multiple perspectives. Hence, we develop a novel face
detection and segmentation approach based on stereo vision and range tem-
plate matching in the next stage, which we find to deliver promising results
and consequently focus on improving details of the range template genera-
tion and matching within the fourth and last stage. Parallel to developing
and evaluating our approach we build up the u’smile face database contain-
ing grayscale and stereo vision pan shot test data. Concluding, our results
indicate that a mobile device pan shot face unlock is a viable approach to
unlocking mobile devices and that using range information might in general
be an effective approach for incorporated face detection and segmentation.

viii



Chapter 1

Introduction

1.1 Why Privacy and Authentication Matter on
Personal Mobile Devices

Nowadays many people carry a mobile device – such as a smart phone –
which has access to a large amount of data. In general, a notable amount
of this data is considered to be private and deserves protection, such as a)
information stored in messages such as mail, SMS, MMS or from instant
messaging services, documents, pictures, videos and music stored on the
device and cached data such as browser history, b) context related data, such
as the current position (e.g. from GPS receiver or assisted, as with Wifi or
mobile cell ID fingerprinting) and data from sensors included in the mobile
device, such as acceleration sensors or gyroscope, c) information related to
accessing a service or network, such as login data to private or company
networks using e.g. VPN or Wifi, login data to mail services, websites and
portals and even payment related information, such as access to banking,
transactions and electronic forms of money (e. g. Falaki et. al. [60], Fried [74],
Furnell et. al. [76]).

In case of this data falling into the hands of an unknown observer, a num-
ber of threats are possible: the observer could gain insight to private and
classified information or could derive such information. They could further
make use of it, e. g. of information related to payment services to conduct
malicious transaction, or they could sell it to third parties. Moreover, the
observer could assess behavioral patterns and predict future behavior, e. g.
by performing location tracking and predicting future locations. Addition-
ally, the observer could use the access to services to spread information in
the device owner’s name, or in order to perform account hijacking (taking
over an account so that the legitimate user has no further access to it).
Finally, the observer could use access to private and company networks to
gain access to further data and devices.

1



1. Introduction 2

In order to protect access to this data stored on a personal mobile device,
access to the device itself has to be protected. In general there are two ways
of accessing a mobile device: remotely and locally. Remote access means
access without physical contact to the device and can be gained over a
network e. g. via software accessing the network legitimately, or using an
exploit for software installed on the device. Local access means access with
physical contact to the device, such as the user interacting with the device
directly. On the one hand, remote access can be limited or even refused, as
it might not be necessary for the legitimate user locally interacting with the
device. On the other hand, local access is necessary for the legitimate user
to interact with this device. For this reason, and for mobile devices being
lost or stolen much easier than classical desktop computers, protecting local
access to the device is a very important task. As an example, even a short
time of physical access to a personal mobile device might enable an attacker
to install malicious software – which could grant the attacker remote access
in the future, without the legitimate user even noticing the device as lost,
stolen or contaminated. Therefore, this work is targeting the protection of
local access to a personal mobile device against unauthorized users.

1.2 Security’s Usability
End user security measures in combination with frequent device usage suf-
fer a major drawback: they don’t get applied voluntarily if their usability is
too low. The problem especially with frequent device usage and local access
protection is simple: from a user point of view, the positive effects of secu-
rity are outperformed by the negative ones. For example, users facing less
risk of somebody else accessing their private data will still not apply the
therefore necessary security in case they are required to remember a long
and complex password – and a few extra seconds during login when enter-
ing this password, each time they want to interact with the device. There
are a few well known examples: studies show that if users are required to
apply a password, but are free at choosing it, they most frequently choose
short or rather incomplex and easy memorizable passwords [20, 90, 147, 200,
207]. This enables possible attackers to eventually derive the password from
previously aggregated information about the user, or simply brute force it.
In case of users applying a complex password, there commonly is the phe-
nomenon of “cognitive load”: as users already have to remember a single,
long and complex password, they are likely going to apply this password
wherever possible. Consequently, attackers are able to access de facto all of
the user’s services and devices once this password has been leaked for an ar-
bitrary reason. These effects can be observed e. g. with company passwords,
which widely only get changed frequently and with the required strength (in
terms of length and complexity), if a corresponding policy is applied.
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All these mechanisms apply to the mobile domain as well – with the ex-
tension that users don’t actively use their devices contentiously, but stop and
continue the interaction frequently. When applying security, this practically
leads to a frequent locking and unlocking of the device – where of course
security’s bad usability preponderates. Consequently, security is not applied
very widely on mobile devices, as stated e. g. in [14, 45, 48, 136, 201]. For
this reason it is important that new ways of authenticating legitimate users
with their personal mobile devices are developed, which provide convenient
security not making the user feel uncomfortable at the same time.

1.3 Objective and Thesis Structure
We propose a pan shot face unlock for mobile devices, which a) uses more
information than frontal face information only based on a pan shot of the
device around the user’s head and b) intends to be more secure and usable
than current mobile device unlocking approaches. Our approach requires a
mobile device with a front side camera and integrated gyroscope sensor, as
it conceptually uses data recorded by cameras and sensors during a pan
shot. In terms of cameras, a pan shot face unlock can make use of mono
and/or stereo cameras. Using stereo cameras has the advantage of having
range visual data available along with colored visual data. The aim of our
approach is to a) increase security over current mobile device authentica-
tion approaches and b) still retain a high usability by a fast authentication
and device unlock. Compared to other face authentication approaches, our
approach requires more information than available in a photo or video of a
face from a single perspective. Attackers would be required to construct a 3D
model or obtain a closely synchronized video stream of the legitimate user
in order to successfully conduct a photo attack (see section 2.3.4). As such
data is harder to obtain than images showing a user’s face from single per-
spective (which often can be obtained from social networks), our approach
is conceptually harder to attack by a photo attack.

We review the currently most widely used classical and most important
biometric authentication approaches for mobile devices and their concep-
tual problems in chapter 2. In chapter 3, we provide an overview of related
work with a) research on mobile authentication systems, focused on face
authentication, b) approaches to face detection and face segmentation and
c) approaches to face recognition. We explain building blocks required for
our method in chapter 4. In chapter 5 we describe our approach in detail
with data aggregation, stereo to range conversion, performing face detection
and face segmentation, performing face recognition and combining classifiers
recognition results. We present the u’smile face database and its predecessor
as source of test data to our approach in chapter 6. In chapter 7 we present
the implementation and evaluation results of our approach in four different
stages. Finally, we conclude and provide an outlook in chapter 8.



Chapter 2

User Authentication on
Mobile Devices

Three basic factors are involved in user authentication (ensuring/confirm-
ing the identity of a person that wants to act as user of a certain system):
knowledge, possession and inherence. When using knowledge based authen-
tication, users authenticate by providing knowledge about something secret,
such as entering a password. For possession based authentication, users pro-
vides something only they have (often called a “token”), such as when using
a specific key or an access card. When using inherence based authentication,
users authenticate by providing information about something they are, such
as biometric information (e. g. fingerprint, iris grain, DNA), or with implic-
itly derived factors, such as certain behavioral pattern (e. g. within gait or
keyboard usage) which do not involve secret knowledge.

When focusing on knowledge as the primary factor in current mobile de-
vice authentication approaches (as all three, currently widely used unlocking
mechanisms – PIN, password an unlock pattern – are based on knowledge),
there is the problem of “cognitive load”. Conceptually, users should choose
different shared secrets for authentication on all devices they use – so that
leaking the secret for authenticating with one device does not necessarily
break authentication for all the other devices too. Therefore, the more de-
vices users owns, the more shared secrets they have to memorize and re-
member. This phenomenon is often referred to as increasing cognitive load.
The bigger the cognitive load of an approach is, the less is its usability –
which is a conceptual problem of knowledge based authentication when used
on many devices. Further, the more shared secrets users have to memorize,
the less likely they will choose long, complex and hard to remember secrets.
Consequently, many users either choose short and easy memorizable secrets,
or often reuse a single, more complex secret. An (in most cases) accelerated
authentication process makes short secrets even more attractive. All of the
mentioned cases make it easier for an attacker to possibly derive the one
shared secret in use, or reuse a secret leaked once for other services.

4



2. User Authentication on Mobile Devices 5

2.1 Classical Authentication on Mobile Devices
When only looking at current smartphones with activated device lock, there
exists a group of three most widely applied locking mechanisms: PIN, pass-
word and unlock pattern. All of them are knowledge based, so that the user
authenticates by providing information about the shared secret.

2.1.1 PIN

With a PIN based mobile device authentication the user enters a – typically
4 digit – number in order to unlock the device before usage (see figure 2.1).
With using a 4 digit PIN, the key space size is 10000, resulting in an en-
tropy of ~13.3bit. Therefore this approach could be brute forced, which can
practically be rendered ineffective e. g. by an increased delay between tries.
In terms of cognitive load and delay when unlocking the phone, PIN based
device unlock requires the user to remember the PIN and from anecdotal ex-
perience usually takes around 2 seconds to unlock the device – which makes
it significantly faster over a password based unlocking mechanism.

(a) Unlock PIN (b) Unlock password

Figure 2.1: Mobile device lock screen awaiting a) a PIN entry and b) a
password entry for unlocking the device.
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2.1.2 Password

Password based device unlock uses essentially the same approach as PIN
based device unlock, with a password instead of a PIN (see figure 2.1).
Before accessing the device the user enters a password, which may be of an
arbitrary length and consist of letters, numbers and symbols. Assuming 80
possibilities per character1, for a 6 character password the key space size is
2.62 · 108, resulting in an entropy of ~37.93bit; for an 8 character password
the key space size is 1.68 · 1015 with an entropy of ~50.56bit. Compared
to PIN based unlocking, password based unlocking takes longer for several
reasons: first, when entering a PIN only buttons for the numbers 0-9 are
required, therefore keyboard buttons are usually bigger and easier to hit.
Second, the majority of current smartphone keyboards is separated into
several parts which each showing a group of characters belonging together,
such as letters or symbols. In order to fully exhaust the entropy of a password
by using letters, numbers and symbols in a mixed way, the user is required
to switch in between the different parts of the keyboard. This a) makes
entering a password slower than entering a PIN and b) practically prevents
the majority of users to fully exhaust the entropy of password based device
unlock.

2.1.3 Unlock Pattern

With a pattern based unlock approach users connect an arbitrary, previ-
ously defined amount of position-fixed dots on the screen of their mobile
device in an arbitrary, previously defined order. Only if all defined dots have
been connected in the defined order, the mobile device unlocks for usage. A
pattern composed out of 9 dots in square formation is used most widely –
but there exist other patterns too, which are composed out of more dots or
have a different geometrical formation (see figure 2.2).

Assuming a pattern composed out of 𝑁 = 9 dots and assuming dots
can be connected in arbitrary order and length 𝑙 within minimal length
𝑙𝑚𝑖𝑛 = 1 and maximal length 𝑙𝑚𝑎𝑥 = 𝑁 , the key space size is 𝑘 = 986409
(see equation 2.1), which results in an entropy of ~19.91bit2. Compared to
PIN and password based unlocking approaches, using a pattern is about as
fast as using a PIN – with the user having to remember the combination of
dots instead of a PIN.

𝑘 =
𝑙𝑚𝑎𝑥∑︁

𝑙=𝑙𝑚𝑖𝑛

𝑁 !
(𝑁 − 𝑙)! (2.1)

1For Android the actual amount of possibilities per character varies among different
builds and versions and usually is even higher than 80 characters.

2With Android only unlocking patterns are allowed which a) consist of 4 or more dots
and b) do not create a connection between dots over other, yet unconnected dots.
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(a) 9 dots (b) 16 dots (c) 25 dots

Figure 2.2: Mobile device unlock pattern using different amounts of con-
nectible dots.

2.2 Attacking Classical Authentication for Mobile
Devices

There exist many different attacks to mobile device authentication based
on PIN, password an pattern unlock. The most important is the shoulder
surfing attack, which is relevant to other domains too – but there also exist
other attacks, such as the exemplary stated smudge and acceleration sensor
attack.

2.2.1 Shoulder Surfing Attack

All three mentioned mobile device unlocking mechanisms – PIN, password
and unlock pattern – are prone to the shoulder surfing attack [161, 176].
With the shoulder surfing attack, an attacker watches the display while the
legitimate user authenticates, and thereby observes the shared secret. The
shorter the secret used for authentication is, the easier and more inconspic-
uous a shoulder surfing attack can be conducted. Shoulder surfing attacks
are a widely known problem not only for mobile devices, but e. g. also for
entering a PIN at an ATM – which essentially is the same problem. Different
approaches specifically developed to be shoulder surfing resistant have been
proposed, e. g. by De Luca et. al. for ATMs by using a color scheme [53]. For
the mobile domain, De Luca et. al. propose different approaches for shoulder
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surfing resistant authentication, such as a back-of-device authentication [54]
or with implicit features derived from performing a pattern unlock [55]. Fur-
ther, there exist a wide variety of graphical password schemes (e. g. [193]),
for which overviews are provided e. g. by Bidde et. al. [16] or Hafiz et. al. [85].

2.2.2 Smudge Attack

Besides being prone to the shoulder surfing attack, the pattern based unlock
approach is prone to another attack more specific to this approach: the
smudge attack [9, 202]. With the smudge attack, attackers analyzes the
display of the mobile device after the legitimate user authenticated. They
thereby observe the pattern that remains on the display of the device, due
to the residual grease left by unclothed fingers (see figure 2.3). Afterwards,
the attackers can use a simple replay attack and use the just observed secret
to authenticate with the device.

(a) Unlock pattern (b) Residual grease

Figure 2.3: Residual greases on the device’s display after performing a
pattern based unlock [202].

2.2.3 Motion Based Keystroke Inference Attack

As with the shoulder surfing attack, all three widely used authentication
approaches – PIN, password and unlock pattern – are prone to the “motion
based keystroke inference attack” [35] (acceleration sensor attack) under cer-
tain circumstances. For reasons of tactile feedback entering a character or
connecting a dot during unlocking widely causes the device to vibrate. As-
suming that vibration based tactile feedback is enabled during unlocking the
device, an application running on the device could use built in acceleration
sensors to record the unlocking vibrations. Based on recorded vibrations
the secret used during unlock can possibly be derived, as conducted e. g. by
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Aviv et. al. [8] or Cai et. al. [35, 36]. This attack requires an application to
be running on the mobile device, which monitors the device’s acceleration
values during authentication. As this is a form of malicious software con-
ducting a side channel attack in order to obtain a secret, the device itself has
to be thought of being compromised – which distinguishes this attack from
the shoulder surfing and smudge attack. The main issue with this attack is
the acceleration sensor values not being thought of deserving protection at
this point in time.

2.3 Biometric Authentication on Mobile Devices
Besides using PIN, password and pattern based unlock, there exist a vast
variety of other authentication approaches for mobile device, such as using
context [169], NFC tags or image based gesture puzzles [163] as authenti-
cation and access criteria for mobile devices. Another concept for mobile
device authentication is using biometric information, which is a form of in-
herence based authentication: users authenticate by providing information
about something they are. Consequently, biometric authentication is concep-
tually resistant to the shoulder surfing attack. Typical steps with biometric
authentication are:

1. Obtain input data, containing the user’s biometric information.
2. Extract or derive features from the obtained data. This features have

to be discriminating amongst different users.
3. Recognize the user based on the extracted features. This is often done

using a distance measurement between features and/or by using a
learning approach.

Widely known forms of biometric information used for authentication
include using fingerprint, DNA, retina and face [52, 99]. Besides those, there
exist other approaches, such as hand-, gait-, ear-, voice- or even shaking-
based recognition (e. g. [141]). When using biometric authentication in the
mobile domain, additional hardware is required for some approaches by now.
The most important approaches conceptually applicable in the mobile do-
main with current device technology are described in detail below.

With every approach to directly using biometric information for authen-
tication, key revoke can be prohibitively difficult (i.e. when the stored tem-
plate or reference images were compromised and the authentication data
would therefore need to be changed). Consequently, authentication based
on biometric information should not target high security systems, but – as
example for our approach – personal mobile devices that are in frequent use,
where this approach is more convenient to use and still provides a higher
security level than current approaches.
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2.3.1 Speaker Recognition

The idea with using speaker recognition is recognizing users by their voice.
First, an audio stream is recorded with the user speaking either a predefined
or a randomly chosen text. Sometimes this stream is filtered in order to
suppress noise and background voices. Then, features are derived from the
audio stream, which – as for other biometric authentication approaches –
are required to be distinctive. Usually, deriving distinctive features is harder
with a randomly chosen text than with using a predefined text. Finally, the
derived features work as input to classifiers, which distinguish between users.
In terms of cognitive load the user only has to remember a key phrase with
using a predefined text. In order to perform speaker recognition on a mobile
device, the device only needs to contain a microphone capable of adequately
recording human voice – which is basically present in each current smart
phone. An approach for attacking speaker recognition is by using a replay
attack (e. g. [187]), based on a recording of the legitimate user speaking either
the predefined or a random pass phrase. In order to resist this attack, the
system can require the user to speak a displayed text – randomly chosen by
the system (e. g. [10]). This requires the approach to verify that the spoken
text matches the displayed text, additionally to perform speaker recognition.

Kinnunen and Li [107] give an overview of state of the art approaches to
text independent speaker recognition, Lawson et. al. [113] give an overview
of state of the art approaches to speaker recognition for the mobile domain.
Fatima and Zheng [61] focus on approaches to short utternance speaker
recognition (SUSR), which is speaker recognition based on a small amount
of training and test data. An additional challenge – specially in the mobile
domain – is treating background noise present additionally to the speaker’s
voice [122, 131]. E. g. Rao et. al. [148] focus on noise robustness in their
mobile device speaker recognition approach. They utilize multi-SNR and
multi-environment speaker models consisting of neural networks for speaker
recognition and evaluate their approach by adding different types and lev-
els of noise. Chetty and Wagner [43] propose a robust speaker recognition
system which is based on fusion of audio-lip motion recognition, audio-lip-
correlation and 2D/3D motion range information within recognition cas-
cades. Hautamäki et. al. [87] use maximum a posteriori vector quantization
(VQ-MAP) as a simpler version of maximum a posteriori adapted Guassian
mixture models (GMM-MAP) for speaker verification.

2.3.2 Gait Recognition

The idea behind gait recognition (e. g. [133–135, 183, 192]) is to distinguish
users by information derived from their gait, which is their distinctive style
of walking (see figure 2.4).
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Figure 2.4: Example of gait consisting of different phases – which are used
when deriving features for gait recognition [183].

First, most approaches use sensors (such as accelerometers or a gyro-
scope) to record the gait while the device is e. g. in a trousers pocket. This
recording often is filtered to discard noise. Then, features are derived from
the gait recordings. This may include an initial extraction of gait cycles (a
cycle is a reoccurring unit containing two steps). Finally, as with other ap-
proaches, these features are handed to classifiers in order to perform user
recognition. Gait recognition is conceptually different from the other stated
biometric recognition approaches, as it is not done at a certain point in time,
but continuously. With gait recognition, a user cannot instantly perform a
device unlock, as gait recognition requires a) the device to be e. g. in the
trousers pocket and b) a gait recording while the user walks, which is longer
than e. g. the recording required for speaker recognition. Therefore, gait un-
lock is an implicit (passive) mobile device unlock and works as follows: users
walk with the device being e. g. in their trousers pockets, and the device
knows it’s with an authorized user. When users wants to use their device
while walking or a few seconds after walking, they can pick the device from
their pocket and use it right away – as the device knows, that it has been
with an authorized user up to the last seconds and assumes that its current
user is a legitimate user. Consequently, the device notices and locks itself
when users take the device out of their pocket and put it somewhere else.

As with all implicit authentication approaches, with gait unlock the user
does not have to remember an unlocking secret, therefore does not to have
to remember any cognitive load. A possibility to attack gait based recogni-
tion is by using a replay attack, which simulates the legitimate user’s gait.
Aggregating data for performing a replay attack is conceptually more com-
plicated than with other approaches – as gait data is not available to the
public (in contrast to e. g. data for face unlock, for which images can possi-
bly be fetched from social networks) and cannot be recorded uncomplicated
(as with voice unlock, for which data could be recorded while talking to the
legitimate user). Recording a user’s gait would require e. g. a malicious mo-
bile device application installed on the user’s device, which secretly records
the user’s gait. We are not considering this threat in further detail, as the
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device itself has to be thought of being compromised at this point. Besides
the mentioned advantages of gait unlock, the main disadvantage is the user
not being able to perform the unlock immediately at a certain point in time.
Therefore, gait unlock is no alternative to the other biometric mobile device
unlock approaches, but an addition in order to increase unlocking usability.

2.3.3 Face Recognition / Face Unlock

With face unlock, the mobile device unlocks for authorized users by recog-
nizing their face, observed by a built-in camera. The core component of face
unlock therefore is face recognition, which is used to distinguish between dif-
ferent people by their biometric facial information. First, the device records
the user’s face (e. g. a single photo, a photo series or a video, see figure 2.5)
with a device integrated camera. Next, face detection and segmentation are
used to a) find the face position in the recorded images and b) extract the
face from the image to a smaller image only showing the face (e. g. rectan-
gular crop area). Finally, face recognition is performed on extracted faces in
order to distinguish between users.

(a) (b)

Figure 2.5: A user performing a face unlock with a) the user presenting his
or her face to the camera and b) the camera recorded face image.

In terms of duration and usability, face unlock can conceptually be faster
than the classical authentication approaches (PIN, password, unlock pat-
tern) and other presented biometric authentication approaches (speaker and
gait recognition). As with the other biometric authentication approaches,
face unlock is not prone to shoulder surfing or similar attacks, and the user
does not have to remember an unlocking secret with face unlock.
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Besides these advantages, face unlock approaches are conceptually prone
to the shoulder surfing attack, with which an attacker spoofs the authentica-
tion by presenting a photo or video of the legitimate user to the camera (see
section 2.3.4). Only using frontal perspective biometric facial information
for face unlock – which is the case for most of the currently existing face
unlock approaches – makes performing photo attacks even easier.

2.3.4 Photo Attack

With a photo attack, an attacker spoofs face based authentication by pre-
senting a sufficiently large and high-quality photo, series of photos or video
to the camera (see figure 2.6). Most current mobile device face unlocking
systems only utilize frontal perspective face information, which makes per-
forming a photo attack even easier – as only frontal and no profile perspec-
tive face images have to be aggregated previously to the attack. For many
people, this data can be grabbed from social networks or video platforms
without restrictions and costs – as this data only yet starts being consid-
ered as deserving protection. Additionally, the grabbed data might likely be
of higher quality than the data actually recorded with a mobile device by
legitimate users in certain situations – in which face unlock is expected to
work accurately nevertheless (e. g. legitimate users recording their faces from
slightly below with additional backlight, which results in bad illumination
of the face).

(a) (b)

Figure 2.6: A user performing a photo attack to circumvent a mobile device
face unlock with a) the user presenting a printed photo of the legitimate user
to the camera and b) the camera recorded face image.
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There exist different approaches specially developed to prevent photo
attacks in face authentication approaches (overview e. g. Pan et. al. [139]),
with an excerpt being presented here. Wagner and Chetty [188] provide an
overview of state of the art liveness assurance approaches for face authenti-
cation systems to overcome photo attacks. A common approach to liveness
assurance is eye blinking, such as used in combination with pupil movement
by Teja [177]. The face authentication system of Frischholz and Werner [75]
instructs the user to look into certain directions during authentication. Using
head pose estimation, the system then recognizes if the user reacts according
to the instructions. Tronci et. al. [179] combine video and static frame anal-
ysis of faces to avoid photo attacks. Bao et. al. [11] use an optical flow field
to determine if the recorded face is on a two dimensional plane instead of
being a three dimensional head. With not only including visual information
during authentication, Bredin et. al. [27] propose an approach based on face
and speech authentication, which aims to be replay attack resistant by ap-
proving the correspondence between audio and visual information recorded
during authentication. Bharadwaj et. al. [15] use motion magnification for
facial spoofing detection in videos. They detect and enhance small facial
expressions in order to detect local binary pattern texture features. They
further perform motion estimation using HOOF optical flow descriptors.

In order to test capabilities of resistance to photo attacks, there exist
several photo attack databases containing photos and videos for spoofing
attacks, such as the Print-Attack database by Anjos and Marcel [7] or the
Replay-Attack database by Chingovska et. al. [44].



Chapter 3

Related Work

In this chapter we present a comprehensive review of face unlock approaches
and their most frequently used core components. Most existing authentica-
tion approaches based on biometric face information conceptually feature
a face detection, face segmentation and face recognition module (see fig-
ure 3.1).

Face Image
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Figure 3.1: Face detection, segmentation and recognition as frequently used
core components of a face unlock toolchain.

The first module (face detection) is used to localize faces in recorded
images. For mobile device unlock based on biometric face information, there
is only one face to find (face localization) in the regular cases. The second
module (face segmentation) extracts faces localized by the face detection
module from recorded images to separated, smaller images. In most cases,
the face segmentation module is integrated into the face detection module
and not mentioned separately, as it is very simple (such as cropping the
image to the rectangular area the face was found in). The final module (face
recognition) checks the user’s identity based on the segmented face images
in order to decide on authentication.

Manabe et. al. [123] provide an overview of biometric authentication ap-
proaches on mobile devices. Tao and Veldhuis [175] propose a mobile de-
vice face unlock approach using Haar-like feature based face detection, a
local binary pattern based filter to achieve illumination invariance and like-
lihood ratio feature verification for face recognition. They evaluate their

15
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approach with photos recorded with mobile devices and using the Yale Face
Database B [80]. Abdel-Hakim and EI-Saban [2] implement a mobile face au-
thentication system using a graph model for face representation and low rank
matrices composed of the graph attributes with Euclidean distance measure-
ments for face recognition. They evaluate their approach on a small dataset
recorded with mobile device cameras and using the FRGC face database 2.0
dataset [145]. Ijiri et. al. [98] implement and evaluate an face unlock system
for mobile devices using studio photographs – although they don’t describe
their test data or the used face detection and recognition approach in de-
tail. Chen et. al. [42] describe a multi-user face unlock approach based on
sparse coding (requiring less samples) that they mention to be applicable to
the mobile domain. They use Eigenfaces and a k-nearst neighbor algorithm
for recognition, but don’t describe their face detection and segmentation
approach.

Beside these approaches, there exist many hybrid authentication ap-
proaches designed for usage in the mobile domain. Most of them have been
implemented and evaluated for research purposes, but not yet been imple-
mented and made available for broad usage on mobile devices. A face and
eye detection for mobile devices is developed by Hadid et. al. [84], based on
Haar-like features and AdaBoost. They verify their approach by using local
binary patterns for face recognition and authentication. In recent research,
McCool et. al. [128] report increased authentication rates by combining real-
time face and speaker recognition for mobile device authentication in the
MoBio project. So do Tresadern et. al. [178], again in the MoBio project –
they localize a face in size and position using sliding window face detection
and cascaded local binary pattern classifiers. For face normalization, they
fit the face shape and texture using active appearance models, then remove
background information and transform the face to a normalized shape with
standard brightness and contrast. For face recognition, they first remove
illumination effects using gamma correction, difference of Gaussian filter-
ing and variance equalization. Then they compute three differently sized
local binary patterns for every pixel and use the resulting histogram as
feature vector for classifiers, for which they use simple distance measure-
ments. Similar approaches have been implemented and evaluated, e. g. by
Mayrhofer and Kaiser [127] and Shen et. al. [170], who also report improved
authentication results with fusing face and speaker recognition in their mo-
bile device authentication approach. Kim et. al. [106] extend the fusion of
face and speaker recognition by using teeth recognition in their multimodal
authentication approach for mobile devices.
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3.1 Face Detection and Face Segmentation
Face detection is finding human faces in images, if there are such. This task
most commonly includes finding the position and size of the face, but may
also include finding the rotation and perspective of the face. Face segmen-
tation deals with the extraction of faces found by face detection from the
originally recorded images. Separating face and non-face related information
in images is an important prerequisite e. g. to face recognition, which con-
ceptually should only utilize face related information. In many cases, face
detection and face segmentation are performed together in a single step or
directly one after another – and face segmentation is not mentioned as a
self-contained component. Both are commonly used as prerequisite to face
recognition, but also in advertisements or with autofocusing on faces with
digital cameras. There exist many concepts to face detection and segmenta-
tion. In general, these approaches can be grouped into two top level classes,
such as done by Hjelmås and Low [92] (see figure 3.2): biometric/geometric
feature-based and image-based (view-based) face detection approaches.

3.1.1 Face detection with biometric/geometric features

Face detection based on biometric/geometric facial features uses knowledge
about the alignment of a human face elements, such as position of eyes,
nose, mouth, ears and eyebrows, the face contour or brighter/darker skin
areas caused by shadows of the face surface structure. As these approaches
need face related features in order to find a face by design, they conceptually
cannot be applied to problems other than face detection without major mod-
ifications. Further, when detecting faces from different perspectives, likely
different biometric features have to be derived – which results in structural
different face detectors for different perspectives. Hjelmås and Low [92] group
face detection approaches based on biometric/geometric facial features in
three further classes: low-level analysis, feature analysis and active shape
models. Low-level analysis based face detection derives visual features from
the image pixels. This include edges, differentiation between grayscale and
color pixels or – if a video is available – changes of pixels between frames.
The problem of features derived by low-level analysis tending to be ambigu-
ous is addressed by feature analysis based face detection. There, a high-level
feature analysis is performed on features derived by low-level analysis in
order to verify them, either by checking their constellation or by deriving
features in a predefined order based on previous knowledge. With active
shape models, the knowledge about facial-feature constellations is used to
form a shape model, which then actively tries to match a potential face in
an image. Amongst the important approaches which evolve towards a po-
tential face location are snakes, deformable templates and point distribution
models.
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Figure 3.2: Classification of face detection approaches by Hjelmås and
Low [92].

3.1.2 View-based face detection

As deriving biometric/geometric facial features explicitly from prior knowl-
edge is error prone to many different external influences (such as changes
in rotation, image illumination or background information) there exist ap-
proaches deriving these features implicitly within view-based face detection.
View-based face detection approaches use image pixels for detection without
making use of biometric and geometric facial features explicitly. Therefore,
these approaches usually require training data, which acts as prior knowledge
and from which features are derived implicitly. Consequently – in contrast
to feature based face detection – view-based approaches are conceptually
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applicable to face detection from different perspectives and even non-face
related detections without major changes to the approach (usually only dif-
ferent training data is required). In their survey, Hjelmås and Low [92] group
view-based approaches into the following three groups: approaches based on
linear subspace transformations, on neural networks and on statistical ap-
proaches. Linear subspace based face detection aims at transforming the face
into a face space – other dimensions better representing faces. Among these
approaches are e. g. the well known principal component analysis (PCA) and
linear discriminant analysis (LDA) [124]. Neural network based approaches
learn discriminating facial features implicitly from training data and fre-
quently include transformations and/or filtering of pixel values as prepro-
cessing. Statistical approaches to face detection include e. g. using support
vector machines and decision trees/decision networks.

3.1.3 The Sliding Window Principle

Especially with using view-based face detection approaches a commonly used
technique is the sliding window principle. With sliding window face detec-
tion, a search window smaller than the original image is shifted through the
image with an arbitrary stepwidth (see figure 3.3).

Figure 3.3: With sliding window face detection, a search window is shifted
through the image inside which face detection is performed [64].

On each position the search window is shifted to, face detection is per-
formed on the part of the image currently contained in the search window.
In order to find faces of different sizes with a sliding window principle, more
than one such sliding window processes with differently sized search windows
are used. At a given search window size and position, the face detection has
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to decide if the current window actually contains a face or not (e. g. with
using a probability value and a threshold separating between face and non-
face detections). As there will be multiple detections with slightly changed
search window positions and sizes next to each other, only the match with
the highest probability inside a certain area will be accepted as detected
face. Further, some sliding window face detection approaches include multi-
ple phase detection: in the first phase, a coarse stepwidth is used for shifting
the search window across the image and for scaling the search window. In
later phases, these stepwidths are decreased in order to match a face position
and size more precisely. On each position and size of the search window, face
detection is performed on the image part currently covered by the window.

3.1.4 Challenges of Face Detection in the Mobile Domain

In literature, face detection and segmentation are often considered to be
widely solved problems due to the vast amount of approaches delivering
promising results. This assumption is based on certain further assumptions –
limitations and restrictions to the test scenario – most of the approaches have
been evaluated on. When speaking about evaluation data these approaches
have been tested on, in many cases one or more of the following limitations
apply to the test data recording scenario:

• Using roughly equal illumination conditions, especially only using a
limited amount of background lightning.

• Using data with fixed, minimum image quality, e. g. only showing a
limited amount of fuzziness.

• Using limited, homogeneous or roughly equal background information
across all data.

• Limiting the allowed changes in participants’ style and appearance,
such as changed beard style, using/not using glasses or different facial
expressions.

• Limiting the distance and rotation variance of the user’s head.
When applying face detection in the mobile domain, these assumptions

do not hold as they do for many test sets. Consequently, face detection
cannot be assumed to be a widely solved problem for all scenarios. Further,
mobile devices still feature less computational power than is available on
most personal, non-mobile computers. Therefore, for mobile face detection
approaches a certain processing speed is mandatory.

3.1.5 Face Detection in Literature

There exist a vast amount of approaches to face detection and segmenta-
tion. Important research towards both successful face detection and face
recognition based on Eigenfaces was conducted by Turk and Pentland [181].



3. Related Work 21

Rowley et. al. [153] use neural networks for face detection. They at first
build up an input image pyramid by scaling the input image to multiple
sizes, then perform sliding window based face detection. Next, they extract
the image content for each window position, perform illumination correction
and histogram equalization. Then, they use the extracted pixels as input to
a feed forward neural network. To avoid multiple detections close to each
other they finally merge overlapping detections. In succeeding research Row-
ley et. al. [152] extend their approach by incorporating rotation invariance.
Haar-like features based on wavelet representations of objects were used by
Papageorgiou et. al. [140] for general object detection and later used by Viola
and Jones [186] for face detection in their well known object detection frame-
work. Lienhart and Maydt [115] extended the approach proposed by Viola
and Jones with easily rotating features to a computationally fast and de
facto standard approach of face detection [185]. Sung and Poggio [174] used
view-based model clusters that distinguish between “face” and “non-face”
incorporating a Mahalanobis distance measurement. They evaluate their ap-
proach only on frontal face images, but the approach could conceptually also
be trained for any other perspective. Bayesian discriminating features were
used by Liu [119], which compare likelihood density estimations of an image
to decide if an image contains a face. Schneiderman and Kanade [164–166]
propose an object detector also applicable to face detection. Their approach
is based on statistics of image parts extracted by using wavelet transforma-
tion. Jesorsky et. al. [101] use a face shape comparison in order to detect
faces in images. The approach aims to be robust to changes in illumination
and background with extracting edges from faces and comparing them by
using the Hausdorff distance [154]. Kienzle et. al. [105] propose computa-
tionally fast approximations to support vector decision functions for usage
in face detection. They replace derived support vectors by a smaller amount
of synthesized input space points in order to reduce computational complex-
ity. Sahoolizadeh et. al. [155] combine Gabor wavelets and neural networks
for face detection and recognition. Douxchamps and Campbell [58] combine
Viola and Jones based face detection with various filters to obtain a good
face detection tracking rate in videos [58]. Abiantun and Savvides [3] use
Real AdaBoost with 3 explicit bins (positive, negative, abstain) to obtain
a single, strong face detector [3]. Dalal and Triggs [50] focus on deriving
robust features for human detection – but their approach can conceptually
be applied for facial detection as well. They propose the usage of grids of
Histograms of Oriented Gradient (HOG) for constructing feature sets and
show that their approach outperforms many previous approaches to human
detection in terms of computation complexity as well as detection accuracy.

Finally, the use of skin color for face detection was investigated by differ-
ent authors, e. g. Hsu et. al. [95], Martinkauppi [125] and Zarit et. al. [199],
but turned out to be less reliable than other approaches.
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For a more comprehensive review of existing face detection approaches we
refer to the surveys of Hjelmås and Low [92], Degtyarev and Seredin [51] and
Yang [198]. Further, Huang et. al. [96] review local binary patterns for facial
image analysis, namely face detection, facial expression analysis and face
recognition, and Santana et. al. [157] provide an overview of facial feature
detectors build upon the Viola and Jones object detection framework.

3.2 Face Recognition
Face recognition is deriving the identity of people from their faces. This
is done by assigning a label (identity) to face with yet unknown identity,
which makes face recognition a classical pattern recognition problem. Face
verification is a binary form of face recognition: it does not derive the iden-
tity from a person’s face, but either confirms or negates a proposed identity
for a given face. Nevertheless, face verification is often called binary face
recognition or simply face recognition in literature. Face recognition is used
in a wide variety of application areas, such as in surveillance (e. g. CCTV),
in access controls (e. g. building/device access, border controls), in the ad-
vertising domain, in human computer interaction (HCI) or robotics. Also
mobile device face unlock incorporates face recognition as a key component.
As face recognition requires face information as input, reliable face detection
is the most frequent prerequisite to face recognition.

As with face detection, there exist two top level approaches to face
recognition: using geometric features and view-based (appearance-based)
face recognition. Geometric feature based face recognition incorporates the
knowledge about geometric alignment of human face elements, such as eyes,
nose, mouth, eyebrows and ears or the face contour. From this geometric
alignment biometric features are derived, which further are used for face
recognition. In general these approaches therefore cannot not be applied to
data other than faces without major modifications. Further, face recogni-
tion from different perspectives likely requires deriving different geometric
features. With view-based face recognition, the pixel values itself are used
for face recognition without deriving geometric features first – but may in-
clude arbitrary transformations of pixel values without knowledge about
geometric features (e. g. subspace transformations such as PCA). As these
approaches do not incorporate finding biometric facial elements based on
prior knowledge of a face’s structure (but derive implicit biometric features
from training samples) these approaches can be applied to different perspec-
tives and even data other than faces (again requiring corresponding training
data).
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3.2.1 Face Recognition Accuracy Measurements

When looking at the task of successfully performing face recognition, face
detection must provide good results as input to the recognition in terms of
a) a high rate of correct detections and b) a good face normalization. When
looking at normalization, it is important that all detected faces roughly
include the same area of facial information (e. g. from the left to the right
ear and from the hair line to the chin) – and that inside the area marking a
face, the faces should be positioned equally (such as centered at the nose).
When measuring the face detection rate itself, the performance can be stated
as amount of correct detections (true positives) and the amount of wrong and
missing detections (false positives and false negatives). A low true positive
rate means that many faces are missed during detection – which causes the
face recognition to have less data available during training and classification.
A high false positive rate means that many detections don’t actually contain
faces – which causes the face classifiers to learn from non-face images. Both
cases will decrease the recognition rate and should therefore be avoided.

Unfortunately, the detection rate is not the only factor influencing face
recognition. Estimating the detection rate for a specific face detection ap-
proach depends on making a binary choice for each of the images if the
face was detected correctly or not. This includes a tolerance in terms of
normalization so that faces e. g. slightly shifted to one side, scaled slightly
differently or with a certain amount of background information still present
will also be counted as correctly detected faces (see figure 3.4).

Figure 3.4: Face images after face detection showing background informa-
tion and unequal normalization in size and position [62].

If the grade of face normalization provided by face detection and seg-
mentation is not sufficient, subsequently applied face classifiers will not only
learn the face-discriminating features, but also discriminating features in
normalization1. E. g. if the face of subject 𝐴 is shifted to one side of an image,
a classifier will also learn the shift besides learning the face properties. If a
face of subject 𝐵 has the same shift, the classifier will more likely classify this
face as originated by subject 𝐴.The same applies for background information
present in face images after face detection, e. g. with using a rectangular crop
area for face segmentation. Again, face classifiers will learn discriminating

1When not learning from geometric but appearance-based features.
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features in background information additionally to the face-discriminating
features. Consequently, the detection rate itself is a poor indicator for the
impact of face detection quality on the subsequent face recognition step.

3.2.2 Challenges of Face Recognition in the Mobile Domain

In general face recognition is – in contrast to face detection – not yet as-
sumed to be a widely solved problem. One of the reasons for this conclusion is
that face recognition relies on feasible and normalized face detection results,
which is a complicated task itself when not incorporating scene restricting
assumptions. Further, face recognition faces the same challenges as face de-
tection, which again lead to decreased correct recognition rates. Amongst
the overall challenges of face recognition are (e. g. Khashman [104]):

• False face detection results are passed to face recognition as input. This
leads to the face recognition learning non-face related information.

• Differently normalized face detection results handed as input to face
recognition, e. g. face images with slightly changed face position and
size inside the image. This can lead to the face recognition learning
features related to the normalization besides learning biometric facial
features.

• Changing illumination conditions and backlight. Again, this can lead
to face recognition learning features not related to biometric face in-
formation.

• Bad image quality, such as small image dimensions, bad image sensor
quality, motion blur or depth of field. This possibly leads to the loss
of important biometric information.

• Background information still included in face images after face de-
tection and segmentation. Especially strongly changing background
information can lead to face recognition learning features related to
background information.

Not all of these challenges and possible problems apply to all approaches
of face recognition. E. g. an approach based on geometric facial features can
possibly avoid learning from background information at all – assuming a
correctly detected face.

3.2.3 Face Recognition in Literature

There exist a vast amount of approaches to face recognition, from which we
are stating an excerpt here in order to present the huge diversity of face
recognition approaches. The first approach to face recognition recognized
widely as successful was proposed by Turk and Pentland [181], which in-
corporated Eigenfaces for face detection as well as face recognition. Their
work is based on previous research by Sirovich and Kirby [171], which were
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the first to publish the usage of Eigenfaces for face representation. Besides
others, they identified changes in illumination as a major problem to their
approach. Belhumeur et. al. [13] address this problem with their approach
of using FisherFaces for facial recognition. They evaluate their approach in
direct comparison to the baseline of Eigenfaces for recognition. Addition-
ally, Brooks and Gao [31] perform an evaluation of FisherFaces across pose.
Georghiades and Belhumeur [80] also address changes in illumination as well
as viewpoint. They therefore use a view-based approach with training sam-
ples showing all illuminations and and poses to automatically reconstruct
face shapes. A comparison of geometrical feature based and view-based face
recognition was conducted by Brunelli and Poggio [32, 33]. Gordon [82]
combines images of faces recorded from frontal as well as profile perspective
in order to perform face recognition. They at first normalize input images
and extract different geometrical facial features. Based on this informations,
they extract several parts of the images and use them for face recogni-
tion. Neural networks for face recognition are discussed by Mitchel [132].
Lin et. al. [116] propose using probabilistic decision-based neural networks
(PDBNN) for face detection as well as recognition. At first they determine
the size and position of a face inside an image, then locate the eyes inside
the face for normalization reasons. Then, they extract regions containing
eyebrows, eyes and nose and perform face recognition using their proposed
classifiers. Wiskott et. al. [194] propose the usage of elastic bunch graph
matching for detecting and/or recognizing faces using only a single image
per subject. In order to incorporate face images with different normalization
in terms of position, size, facial expression and pose, they form image graphs
out of geometric facial features. They extraction of an image graph is based
on a previously build bunch graph, which is positioned using elastic graph
matching. They further use different graph structures for finding and recog-
nizing faces. Li and Lu [118] propose the usage of feature lines, which connect
features of the same class in an arbitrary feature space. For face recognition,
they further use nearest feature line face classification. Bourel et. al. [22]
propose a facial feature extraction approach and use geometric facial fea-
tures to perform tracking tasks. Cootes et. al. [47] also extract feature points
from faces in order to capture the shape of faces. They explicitly target the
problem of geometrical facial features mainly being used for near-to-frontal
perspectives and evaluate their approach with multiple viewpoints around
participants’ heads. Gao and Leung [78] perform face recognition based on
line edge maps (LEM). They address changes in illumination as well as
changes of pose and facial expressions in their approach. Further, they state
LEM as a form of representing faces which might be useful for further facial
processing tasks, such as facial expression recognition. Meng et. al. [130] use
radial basis function based neural networks in order to train their face clas-
sifiers with only a small amount of training data in comparison to amount
of features – a problem frequently encountered in face recognition. Liu and
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Wechsler [120] use a Gabor-Fisher classifier (GFC) to perform robust face
recognition in terms of changing illumination and facial expression. At first,
they derive Gabor features from face images, then reduce the Gabor fea-
ture vector size by applying the Enhanced Fisher linear discriminant model.
Local Binary Patterns were proposed by Ojala et. al. [138] for scaling and
rotation invariant texture classification and later used by Ahonen et. al. [4]
for face detection. They split face images into smaller subregions, extract
local binary pattern histograms which they concatenate to a single fea-
ture vector and use a nearest neighbor algorithm to perform the actual
face recognition. Tsalakanidou et. al. [180] use Eigenfaces to recognize faces
based on color as well as range information. They focus on stating usability
of range information in face recognition and evaluate the usage of separate
classifiers for color and depth as well as a combining both features spaces
for classifiers. Overall, they state a significant increase in recognition ac-
curacy incorporating facial range information. Geo et. al. [77] use a fusion
of multiple views of a person’s face for face recognition, which is similar
to our pan shot approach. They evaluate their approach using the Stirling
face database (PICS)2. Bronstein et. al. [30] address expression variant face
recognition with their approach to 3D face recognition. They map 2D facial
texture images onto 3D geometry, then use PCA to derive comparative fea-
tures for recognition tasks. Weyrauch et. al. [191] perform face recognition
using component-based 3D morphable models. They address illumination
and pose invariance: they use a 3D morphable model of a human head to
create 3D models of users’ heads, using only three 2D images of each user
projected onto the 3D model. Based on the model, different components are
extracted and used for face recognition. Riaz [149] directly compares differ-
ent implementations of neural networks, Hidden Markov Models (HMM),
principal component analysis (PCA) and independent component analysis
(ICA) for face recognition. Venkataramani et. al. [184] compare correlation
filter, individual PCA and FisherFaces as approaches to face recognition
in the mobile domain. They evaluate their implementation using an image
database created from mobile devices. He et. al. [91] propose Laplacianfaces
for facial representation, which is based on Locality Preserving Projections
(LPP) as a form of facial subspace transformation. Based on this represen-
tation arbitrary pattern recognition mechanisms can be applied to perform
face classification. Nazeer et. al. [137] also use neural networks for face clas-
sification. They extract facial features from detected face images, normalize
these using different approaches (incorporating e. g. histogram equalization
and normalized correlation) and finally perform neural network based face
recognition. Klare and Jain [109] introduce comparative measurement cri-
teria for the effectiveness of facial features by using three levels, ordered

2Psychological Image Collection at Stirling (PICS), available at http://pics.psych.stir.
ac.uk/

http://pics.psych.stir.ac.uk/
http://pics.psych.stir.ac.uk/
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by specificness. Kurutach et. al. [112] use trace transform to obtain view-
based facial features and perform face recognition based on the Hausdorff
distance [154].

For a more comprehensive review of face recognition approaches we re-
fer to the surveys of Abate et. al. [1], Akarun et. al. [6], Bowyer et. al. [23],
Chang et. al. [40], Chellappa et. al. [41], Gong et. al. [81], Huang et. al. [96],
Iancu et. al. [97], Jain et. al. [100], Jones [102], Kittler et. al. [108], Scheen-
stra et. al. [162], Wechsler [189], Zhang and Gao [204], Zhao et. al. [205] and
Zou et. al. [206].



Chapter 4

Building Blocks

4.1 Range Algorithms
We utilize range images for face detection and recognition starting with the
third stage of our implementation (see section 7.3), therefore review the
most important approaches to algorithmically obtain range information in
short. A range image essentially is an image which represents the camera to
object distance (depth) in each pixel – e. g. a brighter pixel correlates to a
smaller, a darker pixel value to a larger distance or vice versa. Beside oth-
ers, range images are utilized in the fields of computer vision, such as scene
reconstruction and object detection from neurobiology to robotics. There
exist different approaches to construct range images, with the most impor-
tant being structured light and stereo vision. Because of both approaches
use more than one devices (either projector and camera or two cameras),
calibrating these system is very important.

4.1.1 Range Information from Structured Light

Using structured light for obtaining range images conceptually works as fol-
lows (e. g. [12, 24, 38, 66, 156, 160, 203]): a projector unit projects structured
light onto an arbitrary formed surface. Structured light is a known light pat-
tern, which is easy to observe using computer vision techniques. Therefore,
structured light is typically organized in lines or dots (such as for the Kinect
system). Besides the projector there is a camera, which is mounted with a
known relative distance and angle to the projector. The camera observes
the structured light from this slightly different point of view and extracts
the pattern using computer vision. As there is a distance between projector
and camera, the sensed light pattern will look slightly differently from the
projected pattern, depending on the surface structure. Based on this pattern
and the known setup of projector and camera (relative distance and rotation
in 3D), the structure reflecting the pattern can be calculated. In order to ob-
tain the exact setup information, calibration is required. Utilizing structured

28
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light for range image recording has several advantages and disadvantages:
on the one hand, the technique itself is conceptually robust and can be used
without an external source of light. Using light not visible to the human eye
in the projector further enables such systems to work in virtual darkness.
On the other hand, structured light requires a precise projector, which is
uncommon hardware for current mobile devices.

4.1.2 Range Information from Stereo Vision

Using stereo vision for obtaining range images conceptually works as follows
(e. g. [26, 56, 86, 110, 114]): two cameras record the same scene from different
perspectives; using the two images the 3D structure of the scene is recon-
structed. The principle is one of those used intuitively by humans: to obtain
two slightly different images of the same scene using two eyes in order to
observe depth (stereopsis). As the two cameras also look at the same scene
from slightly different perspectives, the recorded images will look slightly
different too. Utilizing the exact camera setup (relative distance between
cameras (eye distance) and rotation in 3D), the range for each pixel can be
calculated using stereo to range algorithms. As for using structured light,
the required, exact camera setup is obtained by calibrating the system. On
the one hand, the main advantage of stereo vision over structured light for
obtaining range images is that it requires less special hardware (stereo cam-
eras instead of projector and camera). There already exist several mobile
devices featuring stereo cameras by now. On the other hand, the approach
conceptually relies on an external source of light and therefore is not as
universal as structured light. As with structured light, this approach can be
used in observed darkness too using an external source of light invisible to
the human eye and corresponding cameras.

4.2 PCA and Eigenfaces
An early approach to successful face detection and recognition was based
representing faces with Eigenfaces [171, 181] which we utilize in the first
stage of our implementation (see section 7.1). With using Eigenfaces, faces
basically are transformed into a subspace (face space) using principal com-
ponent analysis (PCA). In this subspace, a face is represented by a weighted
combination of all Eigenfaces (which are the face space dimensions). As the
core component of Eigenfaces is transforming faces into the face space using
PCA, we explain the concepts of PCA and Eigenfaces in detail below.

4.2.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) transforms a set of samples 𝑆 from
their original dimensions 𝐷𝑂 to new dimensions 𝐷𝑁 , so that 𝐷𝑁 shows the
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maximum amount of variance amongst data samples. PCA internally uses
orthogonal transformation for finding the new dimensions. Therefore, the
first dimension of 𝐷𝑁 is chosen so that it shows max. variance amongst
data samples. The succeeding dimensions are chosen so that they a) are
orthogonal to all previously chosen dimensions of 𝐷𝑁 and b) show maximum
variance amongst data samples.

−10 −5 0 5 10

−2
0

2
4

Figure 4.1: The first (red) and second (blue) principal component are de-
rived from a 2D point cloud using PCA. The black dot in the center is the
average point which acts as the point of origin for all projections to PCA
derived dimensions.

Mathematically, PCA can be calculated using Eigenvalue decomposition
(decompose data into Eigenvectors and their corresponding Eigenvalues). As
it therefore also depends on the value scaling applied in original dimensions,
it is important to normalize data before performing PCA. The amount of
dimension in 𝐷𝑁 is conceptually the same as the amount of dimension in
𝐷𝑂 when using PCA as an exact, reversible transformation – but often the
less important dimensions of 𝐷𝑁 are left out when further processing data.
This is done as a) usually samples can be represented fairly well using only
the most important dimensions and b) using less features eases subsequent
processing. PCA is therefore often spoken of and used as a subspace trans-
formation, in which data is transformed to a representation requiring less
dimensions than within the original feature space.

4.2.2 Eigenfaces

With using Eigenfaces in facial image processing, face images are trans-
formed from their original dimensions 𝐷𝑂 (image pixels) into new dimen-
sions (face space) using PCA. The face space dimensions (Eigenfaces) are
the principal components calculated by PCA using a certain amount of face
images. Each Eigenface can be thought of being a scalable difference of the
average face in face space towards a certain face space dimension. Faces rep-
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resented in face space therefore are composed of a sum of the average face
and the differently weighted Eigenfaces. For this reason, Eigenfaces them-
selves look similar to actual human faces when being transformed back to
the original dimensions 𝐷𝑂 (see figure 4.2).

(a) (b)

Figure 4.2: Eigenfaces look similar to human faces when transformed from
face space to the original image dimensions (pixels) with a) the average face
used and b) the first five, derived Eigenfaces.

With using an Eigenface representation of faces, faces can be approxi-
mated well with only using a limited amount of the most important Eigen-
faces without actually losing much information. Therefore they are used
within a certain amount of applications processing faces – with the most
widely known approach being Eigenfaces for recognition by Turk and Pent-
land [181] designed for face detection as well as face recognition.

4.3 Classifiers
Starting with the second stage our our implementation (see section 7.2)
we utilize the standard approaches of support vector machines and neural
networks as face recognition classifiers. In the context of machine learning/-
pattern recognition, a classification problem essentially is determining the
class of a sample, of which the class is yet unknown – based on samples
with already known classes [18, 195]. Therefore, classification is a form of
supervised learning. E. g. for face recognition, a face image with unknown
originator’s identity is the sample to be classified. The samples with known
originators’ identities are the source of information, on which the classifica-
tion bases its decisions. The instance performing the classification is called
classifier: it essentially implements a classification algorithm, which first de-
rives (learns) how to distinguish between classes from samples with already
known classes (training data). Based on training data, a classifier is able to
determine the class of a samples with yet unknown class (classification). For
training and classification, samples are handed to a classifier in the form of
an arbitrary amount of features (feature vector), with a features being mea-
surable property derived from the sample. E. g. for face recognition, a face
image feature vector could contain (amongst others) the image pixel values
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and/or numerical properties derived from the face geometry. With think-
ing of each features as an own dimension, each sample represents a point
in a features space – which is the basis for simple classification approaches
based on feature space distance measurements between samples or nearest
neighbor algorithms, as well as for more complex classification approaches.

Amongst well known classification algorithms such as decision trees and
Bayesian approaches, there exist neural networks and support vector ma-
chines for classification. For both, input data normalization is required, as
discussed in detail in [83, 88].

4.3.1 Support Vector Machines

The approach of optimal, linear class separation on a hyperplane was orig-
inally proposed 1963 by Vapnik and Lerner [182]. Incorporating the con-
cept of using large margins for classification [5] Boser et. al. [21] proposed
the kernel trick for optimal, nonlinear class separation on hyperplanes – by
transforming data into a higher dimension using a predefined transformation
(kernel), in which it classes are better separable.

Support vector machines for classification/pattern recognition [34, 49]
are large margin classifiers: they chose the separation between classes so
that a) samples are optimally classified and b) margins between samples of
different classes are maximized (see figure 4.3).

(a) (b)

Figure 4.3: The concept of large margin classification: a) a nonoptimal and
b) an optimal separation between classes in terms of maximizing the margin
between samples of different classes (adapted from [59]).

A support vector machine tries to find the optimal linear separation
of two classes using given samples in an arbitrary feature space, based on
large margin classification. The classification is done using a linear sepa-
rator between two classes (as shown in figure 4.3). Therefore, multi-class
classification with support vector machines conceptually has to consist of
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multiple one vs. all or one vs. one classifications. Samples are classified us-
ing the shortest distance 𝑑 between the sample and the class separator. For
a given sample 𝑑 is intended to indicate the class and distance to the sepa-
rator with a) 𝑑 ≥ 1 for samples belonging to the first class (positive class)
and b) 𝑑 ≤ −1 for samples belonging to the second class (negative class).
Therefore, the space covered by −1 < 𝑑 < 1 is intended to be sample free.
The samples closest to the separator conceptually lie exactly on the class
margin borders (dashed lines in figure 4.3), consequently have a distance of
𝑑 = −1 respectively 𝑑 = 1 and are called support vectors.

Using this hard, sample free margins within −1 < 𝑑 < 1 is a form of
hard margin classification – which is prone to overfitting: if outliers are in-
cluded in data samples, the support vector machine will chose the separator
so that outliers are also classified correctly and therefore will make the class
margin smaller (or prevent data from being linearly separable). In order to
prevent overfitting, hard margin classification can be relaxed to soft margin
classification, with which samples are allowed to be positioned within the
margin or even to be classified incorrectly – which consequently leads to
𝑑 < 1 respectively 𝑑 > −1 for these samples. With soft margin classifica-
tion, samples lying within the class margin are called support vectors. These
support vectors cause a total error 𝐸 which is essentially computed as sum
of support vector distances to the class margin border of their class. Dur-
ing the optimization process a support vector machines performs for data
separation, 𝐸 influences how far samples will be allowed into the margin –
therefore 𝐸 can further be weighted by a factor 𝐶 ≥ 0 (cost):

• A smaller 𝐶 will cause a small penalty for errors caused by support
vectors, therefore allow bigger errors and will lead to class separation
on the one hand being less prone to overfitting, but on the other hand
misclassifying a bigger amount of samples used for training.

• A bigger 𝐶 will cause a big penalty for errors caused by support vec-
tors, therefore allow only small errors and will lead to class separation
on the one hand being more prone to overfitting, but on the other
hand misclassifying a smaller amount of samples used for training.

Support vector machines are conceptually designed to perform a linear
separation amongst classes. As real life data often is only nonlinearly sep-
arable, support vector machines incorporate the concept of transforming
samples from their original dimensions 𝐷𝐿 into higher dimensions 𝐷𝐻 , in
which a linear separation is easier. The transformation is a mathematical
function 𝑘(𝑥) : 𝐷𝐿 → 𝐷𝐻 , which is called kernel. As finding the optimal,
linear separation in 𝐷𝐻 will computationally be more intensive due to the
increased amount of dimensions, an equivalent of separating data can be
computed in 𝐷𝐿 directly (kernel trick). In order for the kernel trick to be
applicable, a kernel must be admissible (the Gram matrix of the kernel must
be positive finite). Amongst the most widely known and applied kernels are
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the linear kernel, the Gaussian/radial basis function kernel, the sigmoid ker-
nel and the polynomial kernel. Each kernel can be configured using several
individual parameters, as explained in detail in e. g. [49].

4.3.2 Neural Networks

Artificial neural networks (often called neural networks only) try to model
the concepts used in a biological brain, using neurons as sources of decisions
and synapses as connections between neurons. The first form of an artificial
neural network was proposed 1943 by McCulloch and Pitts [129] in the form
of perceptron, which originally was a networks consisting of a single neuron.
Incorporating Hebb’s hypothesis of neuron cooperation being correlated with
their spatial distribution [89] neural networks containing multiple neurons
and layers were formed – amongst them feed forward neural networks. Using
multiple layers of neurons required a different approach to learning (such
as [89, 93]). A widely used form of supervised learning for feed forward neural
networks is with using backpropagation [88], with which measured errors
are propagated back through the network in order to learn the intended
behavior.

For classification/patter recognition, feed forward neural networks [17]
try to iteratively learn the correlation between an input pattern (feature vec-
tor) and output pattern (classification result) from training data samples.
Therefore, a pattern recognition feed forward neural network are (in a very
generalized way) structured as follows1. They contain a) an input layer, in
which neurons take the input pattern, b) an output layer in which neurons
indicate the classification result and c) an arbitrary amount of hidden lay-
ers (typical one) which pipe informations (signals) between the neurons of
neighboring layers. Each of the neurons in the network is connected to each
neuron in the previous and successive layer (see figure 4.4a). Each of these
connections holds a weight Ω (usually in the range [0, 1]) which is responsible
for amplifying/damping signals piped over this connection. These weights
usually are initialized randomly before starting the training. Each neuron
contained in the network (see figure 4.4b) further contains a) a propagation
function 𝑓𝑝 : 𝑥 → 𝑢 which combines the weighted signals from neurons of the
preceding layer to a scalar value 𝑢 (e. g. sum function), b) a transfer function
𝑓𝑡 : 𝑢 → 𝑎 (e. g. step function or Sigmoid function) which is responsible for
the neuron firing a signal itself and c) an output function 𝑓𝑜 : 𝑎 → 𝑦 which
is responsible for the actual output signal form.

A neural network conceptually learns by adapting the weights of connec-
tions between neurons. In case of a pattern recognition feed forward neural
network, the network learning approach tries to change the weights in a

1There exist a vast amount of different forms of neural networks with basically no con-
ceptual restrictions to modification. Therefore, we only describe a standard feed forward
neural network for pattern recognition at this point.
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Figure 4.4: a) feed forward neural network with an input, a hidden and an
output layer of neurons2and b) a single neuron combining input signals using
an propagation function 𝑓𝑝, deciding on if the neuron fires a signal itself with
a transfer function 𝑓𝑡 and deriving an output signal using an output function
𝑓𝑜.

way so that a defined input pattern transforms to a corresponding output
pattern when routing the neuron signals from the input to the output layer.
It therefore applies an input pattern from training to the input layer and
transforms the information through the hidden layers to the output layer
(forward propagation). Then, it measures the error between the actual and
the expected output pattern from training data for each neuron in the out-
put layer. This error is propagated backwards towards the input layer and
adapts the connection weights according to the the propagated, weighted
error (backpropagation). Each weight is adapted according to the error, so
that the total error is smaller for this sample – with the amount of change
usually being controlled by a learning rate 𝛼 > 0.

4.4 Increasing Classification Accuracy
We currently do not utilize boosting or bagging of classifiers within the
implementations conducted for this thesis, but might likely incorporate cor-
responding functionality in future research as it will likely increase face de-
tection and/or recognition accuracy.

4.4.1 Boosting of Classifiers

The concept of classifier boosting is to combine multiple weak classifiers
to a single, strong classifier incorporating a modified learning procedure. A

2Feed forward neural network fetched from http://commons.wikimedia.org/w/index.
php?title=File:Artificial_neural_network.svg&oldid=89256918 on 2013/08/18.

http://commons.wikimedia.org/w/index.php?title=File:Artificial_neural_network.svg&oldid=89256918
http://commons.wikimedia.org/w/index.php?title=File:Artificial_neural_network.svg&oldid=89256918
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weak classifier is a classifier not covering all data, but focusing on classifying
parts of the data correctly. Therefore, it eventually classifies major parts of
samples wrong, but classifies some samples correct. In order for boosting
to work, contained weak classifiers just have to classify with higher accu-
racy than a random classifier (therefore incorporate knowledge about the
data). Strong classifiers are classifiers composed out of multiple weak clas-
sifiers that cover all parts of the data. They therefore stick closely to the
correct classification results with major parts of the test samples. In general,
boosting approaches tend to use a part of the training data to train a weak
classifier 𝐶1, then give increased weight to/reuse samples classified wrong
by this classifier when training the next classifiers 𝐶𝑁 . This way wrongly
classified samples probably are classified correctly by 𝐶𝑁 . Further, classi-
fication results of weak classifiers are weighted and combined to obtain a
single, strong classifier result, e. g. using majority voting. Consequently, the
initial wrong classification of a sample by 𝐶1 can conceptually be outweigh
by the correct classification from 𝐶𝑁 . Consequently, boosting can just im-
prove classification accuracy if the weak classifiers actually only cover a part
of the dataset accurately.

On the one hand, boosting proved useful in many evaluations of complex
pattern recognition problems. On the other hand, the boosting comes with
increased effort in therms of learning complexity and possibly duration. In
comparison to classifier bagging – which can combine independently and
ready trained classifiers (they can even utilize totally different, independent
data) – boosting is conceptually performed on the same training data set
and eventually involves an adapted training procedure.

Important research in boosting was conducted by Freund and Schapire
with AdaBoost [68, 70], which was the conceptual basis for further devel-
opment, including Real AdaBoost by Schapire and Singer [159], LogitBoost
and GentleBoost by Friedman et. al. [71–73], CoBoosting by Collins and
Singer [46], BrownBoost by Freund [67] or RankBoost by Freund et. al. [69].
Further, Rosset [150] describes robust boosting using a weight decay and
states the relation of his approach to bagging in detail. A projection of most
difficult examples instead of using a random subspace is used by García-
Pedrajas et. al. [79] to create consecutive training datasets in order to in-
crease accuracy boosting accuracy. Li [117] proposes abc-boost, which adap-
tively and greedily chooses a base class for each boosting iteration. Based on
multiple additive regression trees (MART) [71, 72] they implement and eval-
uate abc-boost as abc-mart. Li et. al. [121] boost SVM based classifiers using
AdaBoost. They further discuss why boosting conceptually strong classifiers
is useful as well as boosting simple classifiers.
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4.4.2 Bagging of Classifiers

With classifier bagging multiple classifiers are combined to a single, more
comprehensive classifier using model averaging (e. g. Breiman [28, 29], Quin-
lan [146], Skurichina and Duin [172, 173], Ditterich [57] and Kuncheva [111]).
Bagging is used to a) obtain scalar classification results from multiple classi-
fiers, possibly classifying very different data, and b) to improve the classifi-
cation stability and accuracy. There is one condition classifiers intended for
combination by model averaging must fulfill in order for bagging to increase
results: the classification must be unstable, so that changing the excerpt of
data used as train data significantly changes the classification results. In
comparison to boosting, which is designed to improve classification rates by
incorporating a modified learning procedure on the same dataset, bagging
my combine ready trained classifiers eventually even trained and classifying
very different types of features and datasets.



Chapter 5

Our Approach

In this chapter we present a stereo vision based pan shot face unlock for
mobile devices. Based on this conceptual pan shot face unlock idea, we
describe and evaluate different stages of our approach in detail in chapter 7.

Our aim is to extend mobile device authentication by combining all sen-
sor information that is available from a pan shot of the mobile device around
the user’s head (moving the mobile device 180∘ from left profile over frontal
to right profile of his or her face, see figure 5.1) – in particular the (2D
or stereo-vision-3D) device camera and the movement sensor data from ac-
celerometers, gyroscopes, and magnetometers. This approach is still fast and
convenient to use but harder to circumvent by a photo attack than with us-
ing frontal perspective face information only – as more information than
contained in a frontal picture of the face would be needed (i.e., attackers
would need to provide a 3D reconstruction of the person’s face or a closely
synchronized video stream instead of a single, static photograph).

Figure 5.1: The mobile device records the user’s face during a pan shot.

5.1 Intended Pan Shot Face Unlock Usage
A pan shot face unlock requires a mobile device with a frontal camera and
sensors such as a gyroscope. Our aim in terms of usability is a quick swipe

38
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of the user’s mobile phone around the front side of their head: the user
holds the mobile phone either right or left of his or her head, so that the
frontal camera points towards one ear. The arm holding the phone should
be stretched. Then the user moves the mobile phone in a rough circle via the
frontal view along to the other side of the head, so that the frontal camera
points towards the other ear. The arm holding the phone should be kept
stretched. All data obtained by the mobile phone, including data recorded
by the frontal camera and motion sensor time series, is then used for face
authentication.

5.2 Pan Shot Face Unlock Toolchain
Our proposed pan shot face unlock toolchain (see figure 5.2) at first records
pan shot data by using a stereo camera and a gyroscope sensor integrated
into the device. Using a stereo to range algorithm, range images are com-
posed, each out of a pair of stereo images. We then perform error correction
on obtained range images to repair erroneous regions. Further, we use sliding
window based template matching as approach to face detection. Therefore
we first create templates of the average torso and head from different per-
spectives, then search for best matching image regions using the templates
of the corresponding perspective. In order to precisely segment face related
from background information, we at next cut out the face using either the
corresponding face template contour, or GVF snakes fitted to the individ-
ual’s face contour. Based on the (now segmented) pan shot faces from dif-
ferent perspectives, we apply face recognition using multiple classifiers (a
classifier per perspective). We first train a face classifier using segmented
grayscale and range faces from the corresponding perspective, then perform
face recognition to obtain a classification result. In order to combine face
classification results from different perspectives, we finally perform majority
voting as a form of classifier bagging.

Pan Shot 
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algorithm
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Figure 5.2: Overview of modules used in the stereo vision pan shot face
unlock toolchain.
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5.3 Pan Shot Data Aggregation
To record data from a 180∘ pan shot of the device around the user’s head
we utilize built-in cameras and sensors. In particular, when users hold the
device with the camera facing their left or right ear for starting the un-
locking process, we intend the device to start recording data. Conceptually,
the device can start this recording automatically, which requires it to recog-
nize the user’s intention at this point. (e. g. using ear recognition). Further,
the device needs to inform the user about recording a pan shot now being
started. We have not investigated in automatically starting a pan shot data
recording yet (will be subject to future work), but require the user to start
the pan shot, e. g. by pressing a button on the mobile device. During the pan
shot, the device continuously records data. For visual data this can be done
in the form of recording a video stream, or – as for sensor data – periodically,
by recording images. When making use of sensor data, especially gyroscope
sensors, while the recording is still in progress, it is also possible to record
images and sensor data after the device has rotated a certain angle 𝛼. This
way there will be a record each for multiple perspectives around the user’s
head: e. g. recording new data with 𝛼 = 15∘ will produce 12 records for a
180∘ pan shot. We use 𝛼 = 30∘ for our first implementation, then change
the angle to roughly fit the perspectives data has been recorded within the
u’smile face database by using 𝛼 = 22.5∘. Before further processing recorded
data, the angles of records are normalized, so that the angle of the frontal
perspective is roughly set to 0∘, the angle of records covering the left side
of the user’s head being negative and the angle of records covering the right
side being positive. As the user finishes the pan shot, the device is naturally
facing the user’s other ear. At this point, the device can conceptually stop
the recording automatically – but as for starting the pan shot recording
within our approaches the user is required to press a button on the device
to stop recording.

5.4 Range Image Creation
Using the grayscale stereo vision image pairs from multiple perspectives
obtained during a pan shot, we create a range image from each pair of stereo
vision images. The techniques used within these stereo vision algorithms are
beyond the scope of this thesis, as they are investigated in parallel in [190].
Each range image contains information related to the camera-object distance
in each pixel. Therefore, these range images show the user performing a pan
shot face unlock in the range domain (see figure 5.3).

Range images derived from a pair of stereo vision images likely contain
erroneous regions, such as areas not containing range information and areas
containing incorrect range information. These errors are often caused by



5. Our Approach 41

(a) (b) (c)

Figure 5.3: Frontal perspective of a user performing a stereo vision based
pan shot face unlock with a) and b) showing the left and right camera images
and c) the derived range image [63].

the concepts used in the stereo to range algorithms. E. g. areas not visible
in both images and regions too homogeneous to correlate pixels within the
two images will result in areas not containing range information. Caused
by these erroneous regions, further errors will arise during processing these
images within face detection and recognition. In order to avoid these errors
we perform a range error correction on obtained range images before further
processing them:

• To correct areas containing incorrect range information (such as peaks
or holes), low pass filters can be used.

• To correct areas not containing range information hole filling algo-
rithms can be used. These often derive pixel information from the
pixel neighborhood (surrounding pixels), such as using interpolation
or a k-nearest-neighbor algorithm.

Using these error corrected range and the original grayscale images, we
perform face detection and segmentation as the next step.

5.5 Range Face Detection and Segmentation
Based on recorded visual and sensor data, we perform face detection and
segmentation in order to obtain visual data as purely related to facial infor-
mation as possible, which we then use for face recognition. As recorded visual
data shows the user’s head and face from multiple perspectives, we need to
take into account the perspective of each image/video frame when process-
ing it. We utilize different approaches to face detection and segmentation. At
first, we use Viola and Jones face detection based on Haar-like features [115,
186] and rectangular cropping for face segmentation. To address finding faces
from multiple perspectives, we make use of different feature cascades of the
Viola and Jones object detection framework, namely for detection frontal
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and profile faces (see figure 5.4).

-90.0° 90.0°

30.0°-30.0°

frontal

profile profile

Figure 5.4: For detecting faces from multiple perspectives using Viola and
Jones face detection [115, 186], the chosen feature cascade depends on the
angle of image recording.

Although face detection results based on the Viola and Jones approach
might seem adequate for successive face recognition, they incorporate several
problematic factors – including a) unequal normalization in terms of face size
and position and b) background information included in face images due to
rectangular cropping of faces. We therefore use range based template match-
ing as second approach to face detection and a template based cutout along
with GVF snakes [196] for precise face segmentation. We therefore first cre-
ate range templates showing the user’s head from multiple perspectives. For
performing template based face detection, we search for the best template
match in a range image using sliding window template matching. Then we
cut out the face either along the template contour or use GVF snakes to pre-
cisely find and segment along the actual face contour. Using segmented face
images (see figure 5.5) along with sensor data, we perform face recognition
as the next step in the face unlock toolchain.

(a) Viola and Jones based (b) Template matching based,
discarded areas marked black

Figure 5.5: Face images segmented using different detection and segmenta-
tion approaches as used for subsequent face recognition.
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5.6 Face Recognition
Based on detected and segmented grayscale and range face images from
multiple perspectives, we now perform face recognition. We therefore use
separated view-based classifiers for each perspective – as well as for grayscale
and range data. Assuming 9 perspectives equally distributed in a 180∘ pan
shot with a grayscale and range image each, we use 18 separate face classifiers
in total with each covering an angle of 22.5∘ (see figure 5.6) – but using a
different amount of classifiers is possible as well. The classifier an image
corresponds to is chosen by the image type and normalized pan shot angle
of recording.

-90.0°

-67.5°

90.0°

67.5°

45.0°

22.5°0.0°-22.5°

-45.0°

Figure 5.6: Perspectives at classifiers are distributed in a 180∘ pan shot
when using 9 classifiers per image type. The classifier perspectives are stated
relative to the 0∘ frontal perspective.

We utilize the standard approaches of support vector machines (SVM)
and neural networks (NN) as face recognition classifiers. Using labeled data
(face images for which the people’s identity is known) we train the classi-
fiers in order to distinguish later between the identities of unlabeled face
images. Our pan shot face unlock approach requires the classifiers to distin-
guish between two types of users: those allowed to interact with the mobile
device (legitimate users, typically one), and those not allowed to interact
(illegitimate users, typically many). Therefore, we treat the face classifica-
tion as a binary classification problem: faces of the legitimate user form the
positive class, and faces of illegitimate users form the negative class. Con-
sequently, after a user performs a pan shot face unlock, the classifiers have
to decide if the user is a) a legitimate user and will be allowed to further
interact with the device or b) an illegitimate user and will not gain device
access – both without deriving the actual identity of the person from the
aggregated data. To chose the classifier fitting this problem best, we evalu-
ate differently configured classifiers using training and test data throughout
our implementations (see chapter 7).
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In order to successfully classify a yet unknown illegitimate user correctly,
our approach conceptually requires to include a large amount of diverse
face images to the negative class. As we don’t want to bother users of our
unlocking approach to provide this data by themselves, we intend to include
diverse sets of negative samples within our implementation. This way users
only need to provide samples for the positive class themselves, which will
most likely be images of their own.

5.7 Combining Classifier Results
From classification results of grayscale and range face classifiers from mul-
tiple perspectives we derive a single face unlock result in the next step.
Conceptually, there exist multiple approaches to combining these results,
such as forming the weighed sum or weighted product of classification prob-
abilities. In our approach, we rely on a simple but effective majority vote.
Each classifier votes for the user either being a legitimate or illegitimate
user, with the choice selected through the majority of votes being the final
results. We distinguish between a weighted and non-weighted majority vote
at this point:

• With a non-weighted majority vote the choices of each classifiers weight
the same. Therefore choices of classifiers which proved to successfully
distinguish between legitimate and illegitimate users during the test
phase will matter the same as from classifiers which performed worse
during testing.

• With a weighted majority vote the choices of classifiers will be weighted
e. g. by their classification performance during testing. Consequently,
choices of classifiers which proved to successfully distinguish between
legitimate and illegitimate users during the test phase will matter more
than from classifiers which performed worse during testing.

On the one hand, using a weighted majority vote may improve the clas-
sification accuracy, as classification results with a low probability of being
incorrect will weight more than of those with a higher probability of being
incorrect. On the other hand, using a weighted majority vote will lead to a
less homogeneous distribution of classification result weighting, which will
further result in some classifiers being more important for actually unlocking
the device than others. In addition, this could lead to attackers preferably
targeting perspectives which are expected to be more important for un-
locking the device. In the hypothetic case of the major responsibility for
unlocking the device being held by a single classifier, namely the grayscale,
frontal perspective classifier, our stereo vision based pan shot face unlock
will basically be reduced to a simple, frontal grayscale face unlock – which
fundamentally defeats the purpose of a pan shot face unlock. As we have
not investigated this issue in detail yet, it will be in the focus of our future
research.



Chapter 6

Test Data

To reproducible evaluate our pan shot face unlock approach, we create the
u’smile face database. There are several reasons why we created this face
database for our face recognition experiments with a controlled set-up in-
stead of in-the-field with mobile phones: a) the illumination of faces shown
in pictures taken with a pan shot around the users head varies strongly
with each pan shot. Therefore, the test results would not be reproducible
and comprehensive enough; b) in our experiments, the frontal camera photo
quality strongly depended on how fast the user moved the mobile phone.
Moving the mobile phone from one ear, along the frontal face perspective
to the other ear took about 4 seconds to obtain photos of good quality. In
case the user moved the mobile phone faster, the image quality was lowered
due to motion blur, which consistently lowered the system reliability; and
c) we are not aware of any other face databases available for research that
contain face pan shots, state the angle at which a picture was taken, and
have multiple pictures per angle and person available at the same time.

The u’smile face database was created in two stages: a first stage, con-
taining grayscale images and designed to be a preliminary face database
for aggregating first pan shot face unlock results and evaluating the face
database usability for research. The second stage is based on lessons learned
from the preliminary version and contains range data alongside grayscale
data.

6.1 Preliminary Pan Shot Face Database
For doing first, comprehensive tests on our face recognition approach, we
have created a preliminary face database at FH Hagenberg1. This database
features 38 people with 1-3 pan shot image sets each and 95 such sets in total.

1We gratefully acknowledge the help of Christina Aigner, who performed the actual
image recording in the context of her Bachelor thesis.
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Each set contains 4-5 grayscale images2, recorded at the angles 90∘, 45∘, 0∘,
-45∘ and -90∘, with 0∘ being the frontal face perspective (see figure 6.1).

-90.0° 90.0°

45.0°

0.0°

-45.0°

Figure 6.1: Perspectives at which images were recorded for the preliminary
pan shot face database.

The images were recorded using a Nikon D50 camera. The unedited,
original image dimension was 5184px × 3456px – during preprocessing, the
size has been decreased to 281px × 375px due to resizing and cropping
the image. The facial expressions of all images in a set are either normal,
eyes closed or smiling and the illumination of the faces is evenly good. As
participants were allowed to change their appearance themselves between
pan shot sets (e. g. facial expression, usage of glasses, different style of hair,
different clothing and jewelry) there is no definite correlation of pan shot set
number and style. One such set is shown in figure 6.2.

(a) -90∘ (b) -45∘ (c) 0∘ (d) 45∘ (e) 90∘

Figure 6.2: Pan shot image set from our preliminary face database.

Using our preliminary face database was made difficult for several rea-
sons, which we want to present as a short roundup of lessons learned. First,
our data featured only a low grade of normalization. This lead to compli-
cated data preprocessing. Secondly, several data sets were incomplete due to

2For some pan shot sets, the image at 90∘ is missing.
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no-standardized recording. Parts of these data were usable in the end, but
other parts failed to be preprocessed or were insufficient for usage in classi-
fication and were excluded from the database. Finally, training and testing
classifiers was difficult because of less data being recorded per subject.

Therefore, the lessons learned are: the recording setup needs to be doc-
umented. Recording condition documentation should include: time and lo-
cation of recording (illumination), setup of the room (e. g. usage of white
screens/linen), position of the participant (especially the position and ro-
tation of the participant’s head), the camera position and rotation as well
as the camera zoom. Applicable systematic changes during recording should
be documented too. This may include patterns of a) style changes (glasses,
clothing, jewelry, hair), b) facial expression changes, c) changes in look-
ing directions and illumination. Using normalized recording conditions (e. g.
same camera and head position and rotation for all participants, same pat-
tern of style changes) ease data preprocessing. Recording multiple complete
data sets per subject is mandatory for evaluating our approach, as distinct
treatment of perspectives requires classifiers to be trained and tested on data
exclusively recorded from this perspective – which may further be originated
by a single subject.

6.2 u’smile face database
Based on lessons learned from the preliminary face database and for doing
comprehensive tests on our face recognition approach, we have created the
u’smile face database. This database is designed to contain a wide variety
of face data, starting with a data set provide test data for pan shot face
detection and recognition with grayscale and range images (range images
represent the camera to object distance as pixel values), with realistic indoor
lighting conditions3. It contains 30 different people, each with 20 numbered
pan shots and recorded with different devices. For each device, each pan shot
image set features 9 different perspectives from one 180∘ pan shot around the
user’s head – each 22.5∘ an image/image pair has been taken, with 0∘ being
the frontal face perspective (in correlation to the perspectives classifiers are
arranged for face recognition, see figure 5.6). For each person, pan shot image
set, and perspective, the following images are contained in the database (see
figure 6.3):

• A high quality, colored 2D image, recorded with a digital single-lens
reflex camera (Canon EOS 400D, 3888px × 2592px).

• A colored, 2D image pair, recorded with a mobile device stereo camera
(LG Optimus 3D Max P720, 2× 640px × 480px).

3We gratefully acknowledge the help of Christopher Gabler, who performed the actual
image recording in the context of his Bachelor thesis.
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• A colored 2D and a raw range image, recorded with a Microsoft Kinect
and the OpenKinect framework (2× 640px × 480px).

(a) (b)

(c)

Figure 6.3: Excerpt of the u’smile face database showing one dataset for
one subject from one perspective, with a) high quality, colored 2D images,
b) colored 2D mobile device stereo camera image pairs and c) OpenKinect
colored 2D and range images.

For each pan shot image set, the direction and facial expression was
slightly varied by the participant to give some variety for the training data.
Table 6.1 states the relation between pan shot image set number and the
participants’ direction/facial expression (from the participant’s perspective),
with an already preprocessed example shown in figure 6.4.

Various parts parts of the u’smile face database can be obtained for re-
search and teaching with attribution to [63] from the u’smile project home-
page (online at http://usmile.at/downloads).

6.2.1 Recording Setup Description

Recording took place indoors at the University of Applied Sciences Upper
Austria, School of Informatics, Communication and Media in Hagenberg.
Recording was done with realistic indoor illumination conditions: the main
source of light was artificial light from above; additionally, sunlight was indi-
rectly shining into the room from glass partition vis-a-vis of the participants.
The recording devices where mounted on a wagon in about the height of the
sitting person’s head (see figure 6.5a). The wagon was rolled 180∘ around
the sitting user to record a full pan shot, keeping a distance of about 1.5m
to the head. The 9 wagon positions of recording were marked on the floor to
obtain the exact same 9 perspectives for all pan shot sets (see figure 6.5b).

http://usmile.at/downloads
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To have the head at the roughly same position for all participants, we used
a wooden stick mounted on the wall, against which each participant lent
his or her head (see figure 6.5c). This stick causes an artifact in the data,
visible in both profile perspectives for all devices. The five positions users
were supposed to systematically look at during recording were marked on
the opposite wall (see figure 6.5d).

6.2.2 Lessons learned

Compared to the preliminary face database, this database version contains
many more (20) pan shot data sets per participant. Still, comprehensive
training and tests are limited by the amount of data per subject – therefore
recording even more data per subject would be required and will eventu-
ally be done in the future. As the recording setup was well normalized and
documented, the variance in data is low. E. g. participants did not signif-
icantly change their head positions between pan shots. On the one hand,
such a tight grade of normalization eases processing the data and normally
increases later classification accuracy. On the other hand, classifiers possibly
learn features based on side effects of this high grade of normalization ad-
ditional/instead of learning subject related features. As example, classifiers
may learn the exact position of a subject’s head, which varies little within
the subject’s data, but varies more within different subjects (due to initial
positioning variances). Consequently, classifiers may distinguish subjects by
using the exact position of the head only – without actually making use of
subject related features. The same applies to illumination conditions: due
to all recordings of a participant being done at once and the sunlight added
to the artificial light slightly changing over time, the illumination condi-
tions changed continuously throughout the subjects’ recordings – with all
data of a single subject still roughly showing about the same illumination.
Classifiers could make exclusive use of the illumination to distinguish sub-
jects. Therefore a certain amount of irregularities in data normalization may
be useful for future recordings to suppress these types correlations. These
irregularities might be added after recording in artificial way, e. g. by down-
scaling/blurring, adding a certain amount of noise, random position shift or
scaling.
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Nr. Look direction Facial expression
0 straight normal
1 straight smiling
2 straight eyes closed
3 straight mouth slightly opened
4 slightly top left normal
5 slightly top left smiling
6 slightly top left eyes closed
7 slightly top left mouth slightly opened
8 slightly top right normal
9 slightly top right smiling

10 slightly top right eyes closed
11 slightly top right mouth slightly opened
12 slightly bottom right normal
13 slightly bottom right smiling
14 slightly bottom right eyes closed
15 slightly bottom right mouth slightly opened
16 slightly bottom left normal
17 slightly bottom left smiling
18 slightly bottom left eyes closed
19 slightly bottom left mouth slightly opened

Table 6.1: Look directions and facial expressions for each pan shot.

Figure 6.4: Preprocessed images of 8 different pan shots (Nr. 0-7), featuring
different look directions and facial expressions.
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(a)

(b) (c)

(d)

Figure 6.5: u’smile face data base recording with a) recording devices being
mounted on a movable wagon, b) the recording positions marked on the floor
using tape, c) the stick used for positioning participants’ heads and d) the
look directions being marked on the opposite wall.



Chapter 7

Implementations and Results

In this chapter we describe the prototypes implemented along developing
our mobile device pan shot face unlocking approach. The implementations
were done in stages, so that weaknesses of each stage were identified and
improved within the next stage. The first state (see section 7.1) introduces
a prototypical pan shot face recognition on Android, using Haar-like feature
based Viola and Jones face detection, Eigenfaces for face recognition and a
our preliminary face database for conducting an evaluation. With the first
stage we identify the face recognition and small amount of data as main
components deserving improvement. Consequently, in stage two (see sec-
tion 7.2) we evaluate support vector machines (SVM) and neural networks
(NN) as face classifiers, introduce the u’smile face database and use it for
more comprehensive tests of our face unlocking approach. Within stage two
we identify the face detection as not working reliably enough for detecting
a single, upright face in a mobile face unlocking scenario. In stage three (see
section 7.3) we therefore extend our face unlocking approach to make use of
range data (range images composed from mobile device stereo camera im-
ages). We introduce a range template based face detection and segmentation
and evaluate our new approach on range images of the u’smile face database.
In stage four (see section 7.4) we improve the range template creation, tem-
plate matching and face segmentation. We further extend the approach with
using GVF snakes for precisely segment the user’s face along its actual con-
tour and again evaluate our approach using range images contained in the
u’smile face database.

7.1 Android Prototype (Proof of Concept)
In this section we present a first prototypical implementation towards a mo-
bile device pan shot face unlock using an Android smart phone, which was
first presented in [65]. The intention of this prototype is to use recorded
real life data and use it for an proof-of-concept on-device user identification.
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For aggregating grayscale pan shot data we utilize the frontal camera and
gyroscope sensor integrated into the mobile device. In order to extract faces
from recorded images, based on the image angle we either perform frontal or
profile face detection using the approach of Haar-like features by Viola and
Jones [115, 186]. Based on the image angle we then perform face recognition
using Eigenfaces by Turk and Pentland [181]. Finally, we sum up the prob-
abilities from classifiers of different perspectives in order to obtain a scalar
recognition probability per subject.

7.1.1 Method

Intended Usage

The Face Unlock we intend to develop requires a mobile device with a frontal
camera and sensors such as a gyroscope. Although our mid-term aim in
terms of usability is a pseudo-3D reconstruction of facial features with a
quick, non-standardized swipe of the user’s mobile phone around the front
side of her/his head, in this first stage of prototypical implementation we
require the user to perform a more formalized swipe of the camera: the user
holds her/his mobile phone either right or left of her/his head, so that the
frontal camera points towards the ear. The arm holding the phone should
be stretched. The user then moves the mobile phone in a rough circle via
the frontal view along to the other side of her/his head, so that the frontal
camera points towards the other ear. The arm holding the phone should be
kept stretched. The data obtained by the mobile phone, including a frontal
camera video stream and motion sensor time series, is then used for Face
Unlock to avoid the simple attack vector of presenting a static picture of the
user’s face to a static phone.

Pan Shot Face Recognition Toolchain

During a pan shot, different images of the user’s head are recorded from
different perspectives. Using these images and the angle they were taken
at, we performed either frontal or profile face detection – which results in
the extracted faces along with the angle at which were originally recorded.
We use this data to a) train classifiers and b) classify new face images.
For different angles we use different classifiers, so that each classifier only
covers a certain angle during training and classification and can therefore
specialize for this point of view. For each subject, the classification is treated
as a binary classification problem: the subject’s face images are the positive
class, the face images of all other subjects are the negative class. For each
pan shot, the classification results for different angles are combined to a
single scalar value – estimating the overall probability of having detected an
authenticated or a non-authenticated user. Figure 7.1 provides an overview
of this toolchain, as it has been implemented for the Android prototype in
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this stage and is simulated for improvements on desktop computers in the
succeeding stage.

Grayscale Image
Angle

Face
Detection

Combi-
nation

Grayscale Face
Angle

Recognition
Probability
Lists

Recognition
Probability
List

1.
2.
3.

1.
2.
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3.

Classifier

Per Angle

Figure 7.1: Overview of the modules used in the pan shot face unlock
toolchain.

Environment

As environment for a Face Unlock prototype we are targeting an state of the
art mobile phone with frontal camera and at least a gyroscope and based
on Android to enable future integration into the platform unlock feature.
For the implementation within this first stage, we use a Google/Samsung
Nexus S GT-I9023 device running Android 2.3.3. For face detection and
recognition we use OpenCV [25] compiled for Android1 and JavaCV for
Android2 as wrapper around OpenCV.

Face Detection

The Face Unlock application has a state STATE, which initially is IDLE. As the
user holds the mobile phone with the frontal camera towards one ear, the
application changes from IDLE to ACTIVE. The application stays active as the
user moves the mobile phone via his or her frontal face towards the other
ear. As soon as the frontal camera points to the other ear – determined
by the gyroscope data –, the application goes from ACTIVE to IDLE again. In
our prototype implementation, changing STATE is done by the user pressing
a button. As long as the application is ACTIVE, photos are taken using the
frontal camera. The application decides when the next photo should be taken
by monitoring the device angle, resulting from the gyroscope time series. If
the changes in the device angle since the last photo are larger than a defined
threshold 𝛼, the next photo is taken. For our experiments, 𝛼 = 15∘ has
been used. Each photo is stored along with metadata (most importantly the
current device angle). Therefore, roughly the same number of photos are
made for a pan shot done for each Face Unlock, and processing the photos
can be done afterwards.

1http://opencv.alekcac.webfactional.com/downloads.html
2http://code.google.com/p/javacv/downloads/list

http://opencv.alekcac.webfactional.com/downloads.html
http://code.google.com/p/javacv/downloads/list
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We do not record a full video stream of the whole camera movement
across the user’s face because of the mentioned limitations in the mobile
phone APIs: on the one hand, most phones offer only limited resolution in
video mode when compared to picture mode, and on the other hand, Android
does not yet support accessing the raw video stream with low processing
overhead from third-party applications. Additionally, the limited processing
resources on current mobile phones would not allow to process the full video
stream for face recognition in real time.

As the application switches from ACTIVE to IDLE, the following steps are
processed: first, a normalization of the metadata stored with each photo is
performed. Assuming that – seen from a frontal face perspective – the user
has held the mobile phone at roughly the same angle when starting and end-
ing the Face Unlock, the frontal face perspective is defined to be at an angle
of 0∘. When 𝛽 is the total angle the mobile phone has rotated, the normal-
ization is performed so that the maximum left angle of all photos is roughly
−𝛽

2 , and the maximum right angle of all photos is roughly 𝛽
2 . Second, all

photos are converted to gray scale. This conversion incurs some information
loss, but most face recognition algorithms operate on gray scale only to be
more robust against different lighting conditions, and the limitation to a
single channel allows faster processing in subsequent stages.

Finally, face detection is performed for each photo. The OpenCV face
detection classifier cascades is chosen depending on the metadata stored
along with each photo, where 𝛾 is the device angle the photo was shot at and
𝜑 is a predefined threshold angle. If 𝛾 < −𝜑, the PROFILE classifier cascade is
chosen. If 𝛾 > 𝜑, the picture is mirrored3 and the PROFILE classifier cascade
is chosen. If |𝛾| ≤ 𝜑, the FRONTAL-ALT classifier cascade is chosen. For our
experiments 𝛾 = 30∘ was used. Face detection is then performed using the
chosen classifier. Finally, areas that are found to contain a face are extracted
from the pictures and saved to separate face images along with the angle
the picture has been taken at. Figure 7.2 shows the pictures recorded during
one pan shot, along with the faces detected in those pictures. These face
images are then used for face recognition in the next step.

Face Recognition

For face recognition, the Face Unlock application contains several classifiers.
Each classifier covers a certain angle-of-view 𝛼 of the user’s face, which cor-
responds to the multi-view approach of Pentland et. al. [142]. Therefore, face
images shot at a similar angles will be assigned the same or a neighboring
classifier in the normal case. For our experiments, we used 𝛼 = 20∘, which
results in about 9 classifiers for an assumed total device rotation of 180∘.

The Face Unlock application can either be in TRAIN or in CLASSIFY mode.
For both modes, the application takes the face images resulting from sec-

3The OpenCV PROFILE classifier cascade only detects left profile faces.
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Figure 7.2: Pictures recorded and faces detected from one pan shot.

tion 7.1.1. In TRAIN, the classifiers are trained with face images of people that
should later be recognized. Therefore the identity of the person is set manu-
ally in this mode. Detected face images are saved and assigned to a classifier,
corresponding to their angle. As face classifiers we use Eigenfaces for face
recognition as proposed by Turk and Pentland [181] in the first stage. Eigen-
faces are based on an average face, which has to be recalculated every time
the training faces are expanded — otherwise, no expansion will be possible.
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As the user switches the Face Unlock application from TRAIN to CLASSIFY, each
classifier is trained with all face images assigned to it. This training is done
on the end-user phone without requiring server-assisted (“cloud”) computa-
tion for privacy reasons. Our prototype implementation is therefore also a
proof of concept of the feasibility of on-device biometric authentication on
current smart phones.

When the Face Unlock application is in CLASSIFY mode, detected face
images are classified by the classifier corresponding to the angle at which
the face image has been shot. For each face image to classify, a classifier
delivers a list of distances. Each distance corresponds to the difference of
the face image to classify to the face images of the people known to the
classifier. Probabilities of how certain the person currently unlocking the
device is a person known to the system can be derived from these distance
lists.

For our proof-of-concept Android implementation, we are summing up
the probabilities of different angles to obtain an overall probability, with
which access to the mobile phone can then either be granted or denied.

7.1.2 Test Setup and Results

Using the images from the our preliminary face database as input to our Face
Recognition system results in a face detection rate (true positives in terms
of authentication systems) of 100% for frontal face images (which use the
FRONTAL-ALT classifier) and 90.5% for face images shot at angle 𝛾 and |𝛾| = 45∘

and |𝛾| = 90∘ (which use the PROFILE classifier). A few false positive cases
from the PROFILE face detection, such as the examples shown in figure 7.3,
negatively influence the latter face recognition, as they are used for training
and test data as if they were correct results.

Figure 7.3: Examples for false positive results from the PROFILE face detec-
tion.

In the regular case a face can be detected in each picture taken in the
pan shot, assuming a slow enough device movement of about 4 seconds
for the total pan shot, and a sufficient illumination of the face, as shown
in figure 7.2. In case of poorer illumination of the face, for some recorded
pictures no faces might be detected, as shown in figure 7.4.
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Figure 7.4: Pictures recorded and faces detected from one pan shot with
more difficult illumination conditions.

Even if this detection rate is sufficient for our first, prototypical usage,
improvements to the face detection might become necessary in the future, as
more intensive tests of the algorithm in [58, 158] have shown that specially
the profile face detection classifier of the OpenCV implementation suffers
from a decreased detection rate.
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The face recognition rates of our Face Unlock application have been eval-
uated using our preliminary face database in a test classification as follows:

1. Randomly chose a pan shot as test set. The person shown in this set
is the test subject.

2. Chose other pan shots of the test subject as training sets.
3. Further add random pan shots of other persons to the training sets,

until the training set contains 20 pan shots.
4. Train the Face Unlock application with the training set. The classifica-

tion problem is reduced to a binary classification problem by treating
all images that belong to the test subject as being part of the posi-
tive class, and all images of all other persons as being part of a single
negative class.

5. Test the Face Unlock application with the test set.
For 100 such classifications, the test subject got recognized in 78.5% using

frontal face information only, and in 55.8% using pan shot face information.
We argue that the overall recognition rate (i.e. the true positives rate for
the authentication case) is lower when using pan shot information because
of our combining probabilities of the different views by simply summing up:
as frontal face pictures seem to be easier separable than profile face pictures,
as stated e.g. by Santana et. al. [158], and the profile faces are being detected
less reliable at the same time, the better results of frontal face recognition
are extended by a 4 times larger amount of worse results from profile face
recognition. However, we assume a significantly higher difficulty level for
tricking the system into authentication when relying on the pan shots instead
of only frontal face shots. An attacker would have to replay a synchronized
video stream while moving the attacked device or manufacture a 3D bust
of the owner’s face. Although we can not yet quantify the resulting increase
in security, we argue that a small decrease in recognition rate is outweighed
by the increase in security, which would support the day-to-day use of Face
Unlock even for application scenarios with higher security demands.

7.1.3 Discussion

Our first results strongly indicate that face detection can be done sufficiently
reliable even for pan shots, but that the second step of recognition based
on Eigenfaces does not (yet) work reliably enough for further usage. Addi-
tionally, as stated by Belhumeur [13], changes in illumination are a major
problem for recognition based on Eigenfaces. As changes in illumination are
omnipresent in the mobile domain, this approach is not sufficient.
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7.2 Improving the Android Prototype
In this section we present conceptual improvements to approach used with
the proof-of-concept Android prototype (see section 7.1), which were first
presented in [62]. In the first stage we have identified face recognition be-
ing the main component deserving improvement, especially as Eigenfaces
for face recognition deliver inadequate results when used within conditions
typical for usage in the mobile domain. Consequently, improvements include
the usage of Neural Networks [132] and Support Vector Machines [143] as
conceptually more powerful approaches to face recognition – as well as a
significantly improved test set for evaluation. For face detection we still use
the approach of Haar-like features by Viola and Jones [115, 186].

7.2.1 Test Setup and Results

To evaluate the benefit of improving specific parts of the toolchain used
in the prototype, we simulate the toolchain with desktop computer scripts
in Matlab and R. With these scripts we measure the performance of more
promising approaches to face recognition, using 2013’ Kinect color and range
images from the u’smile face database as data source. Our face detection
approach is evaluated on 620 instead of 600 pan shot sets, as we added 20
additional pan shot sets from a previously recorded person – with changed
beard style. Our face recognition approach is evaluated using the standard
600 pan shot image sets.

Face Detection

Before performing face detection, we preprocess the images of our face
database by cropping and scaling, then converting to grayscale. The pre-
processed images are of 1000px × 1333px size, with large parts of the left
and right side of the image being pruned. This is done in order to a) reduce
the calculation power needed for processing the images and b) obtain an
image layout and quality more realistic for images originating from a mobile
device camera. We then perform face detection (including mirroring of right
profile faces) as described in Recording Data and Performing Face Detection
and cut out the biggest face found – if there is such one. In order to give a
measurement of correctly/incorrectly or not detected faces, it is necessary
to decide on a border between still correctly and just incorrectly detected
faces (see figure 7.5). As deciding if a face should still be counted as detected
correctly is a) hard to be done automated, and b) such a component will not
be needed for a productive pan shot face unlock system, we did this decision
by hand for all detected faces. The obtained face detection results for each
perspective are stated in table 7.1.

The face detection results show clearly that, especially for non-frontal
perspectives, many incorrectly detected faces will be passed to face classi-
fiers in the next stage. This finding is consistent with more intensive tests of
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(c) Correct (d) Incorrect

Figure 7.5: Deciding on a) still correctly detected faces and b) already
incorrectly detected faces.

Persp. Cor. Incor. Not. Ratio
-90.0∘ 521 59 40 84.0%
-67.5∘ 567 47 6 91.5%
-45.0∘ 581 36 3 93.7%
-22.5∘ 374 132 114 60.3%

+00.0∘ 549 46 25 88.5%
+22.5∘ 398 132 90 64.2%
+45.0∘ 383 229 8 61.2%
+67.5∘ 532 49 39 85.6%
+90.0∘ 427 26 167 68.9%

Table 7.1: Face detection results for perspectives (Persp.): amount of faces
detected correctly (Cor.), detected incorrectly (Incor.), nothing detected
(Not.) and the correct to all ratio (Ratio).

the algorithm [58, 157, 158], which indicate that the profile face detection
classifier of the OpenCV implementation suffers from a decreased detection
rate. Consequently, this will lead to classifiers learning wrong data, as in-
correctly detected faces are treated like faces as well during training and
tests – and therefore adulterate overall face recognition results. Hence, we
evaluate face recognition twice, with using a) correctly detected faces only,
to evaluate the face recognition performance only, and b) using correctly
and incorrectly detected faces, to obtain the overall system performance up
to face recognition.
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Face Recognition

Based on the detected faces and their angle of recording, we evaluate differ-
ent face classifiers. In our preliminary experiments [65], we used Eigenfaces
for recognition [181], with which we obtained an unsatisfying overall person
recognition rate of 55.8% when applied to a preliminary face database of
38 people. Therefore, we now evaluate more promising approaches of differ-
ently configured support vector machines (SVM) and feed forward neural
networks (FFNN) as face classifiers. Before performing face recognition, we
resize found faces to 128px × 128px to have a uniform amount of features
for each image, and reduce the amount of calculation power needed during
processing. For adjusting the classifiers well, we do a parameter grid search
for a) the number of hidden layer neurons for using FFNN classifiers, and b)
configuring the SVM parameters corresponding to the used kernel, as sug-
gested by Hsu et. al. [94]. We further treat our face recognition as a binary
classification problem: for each of the 30 subjects from our face database,
all images corresponding to the particularly selected subject represent the
positive class – and the images of all other subjects represent the negative
class. This results in the negative class being 29 times the size of the positive
class – which consequently will lead the learning of our classifiers towards
the negative class. As a result, the true positive rate will be lower than the
true negative rate – which is according with our face recognition results.
Each classifier is trained and tested on all of these 30 possible binary clas-
sification problems, with at most 60% of the data from the corresponding
perspective, so that the other 40% are left for explicitly measuring the final
classifier performance. Final results are measured in recognition rate distri-
bution per classifier, and recognition rate distribution per angle for the best
performing classifier.

Training and Test Procedure for Support Vector Machines For
each angle, subject and classifier, one SVM is trained using the correspon-
dent part of the train set, and evaluated on the correspondent part of the
test set. For our implementation, we make use of LibSVM [39].

Training and Test Procedure for Neural Networks For each angle,
subject and classifier, 10 FFNN are trained with the correspondent part
of the train set. 30% of the total set of the corresponding perspective is
used for training the network, 12% for cross validation to stop the training
if improvements become too small, and 18% to evaluate the 10 generated
neural networks against each other. Only the best performing network is
evaluated on the last part of the test set afterwards.
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Face Recognition Results Table 7.2 shows the configuration of the
best performing classifiers and their corresponding parameter configuration.
These classifiers were evaluated once each with a) using correctly detected
faces only for training and test, and b) using incorrectly detected faces as
well as correctly detected faces for training and test (see figure 7.6).

Nr. Type N Kernel C Gamma D Coef
1 FFNN 6 – – – – –
2 FFNN 17 – – – – –
3 FFNN 20 – – – – –
4 FFNN 25 – – – – –
5 FFNN 30 – – – – –
6 SVM – Sigmoid 1 0.0001 – 0.01
7 SVM – Linear 10 – – –
8 SVM – Radial 1 0.0001 3 –
9 SVM – Polynomial 1 0.1 3 0

Table 7.2: Classifier parametrization with classifier number (Nr.), type,
amount of neurons in the hidden layer (N), kernel, cost (C), gamma, degree
(D) and coefficient (Coef).

The results of our face recognition show clearly that passing erroneous
face detection data to face classifiers strongly decreases the recognition rate.
As an on-device implementation of this pan shot face recognition toolchain
has to rely on the detected faces only (including erroneous data), this will
further strongly decrease the overall performance of the system. We assume
that, for our pan shot face unlock approach, our used face detection mech-
anism will not be sufficient. Hence, more robust and reliable approaches to
finding faces in images will are addressed in the succeeding stages.

Using correctly detected faces only we achieved a true positive/negative
face recognition rate of 97.81%/99.98% and of 86.22%/99.57% with using
correctly as well as incorrectly detected faces, for the overall best performing
classifier – the SVM with linear kernel. We further analyzed the face recog-
nition rate for different perspectives using this classifier (see figure 7.7).

Interestingly, the results show that, for using correctly detected faces
only, there is no remarkable and clearly visible difference in recognition
rate from the profile perspectives over the frontal perspective. Therefore,
we assume the overall face recognition performance, based on well-known
approaches of support vector machines and neural networks, to be sufficient
for our further research (using correctly detected faces only). For fine-tuning
the ready-made toolchain in a later state of research, more sophisticated
approaches to face recognition might still come in use as well.
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Figure 7.6: Face recognition results: true positives for using a) correctly
detected faces only, b) incorrectly detected faces as well, and true negatives
for using c) correctly detected faces only, d) incorrectly detected faces as
well.
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Figure 7.7: Linear kernel SVM face recognition results for different perspec-
tives: true positives for using a) correctly detected faces only, b) incorrectly
detected faces as well, and true negatives for using c) correctly detected faces
only, d) incorrectly detected faces as well.
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Based on these results, we assume a significantly higher difficulty level for
tricking the system into authentication when relying on the pan shots instead
of only frontal face shots. An attacker would have to replay a synchronized
pan shot video stream while moving the attacked device or manufacture a
3D bust of the owner’s face. Although we cannot yet quantify the resulting
increase in security, we argue that even a small decrease in recognition rate
would be outweighed by the increase in security, which would support the
day-to-day use of face unlock even for application scenarios with higher
security demands.

7.2.2 Discussion

We are using the Viola and Jones algorithm implemented in OpenCV for face
detection with cascades optimized for frontal and for side images. We further
use support vector machines and neural networks for face recognition, based
on previously detected faces. While the approach to face recognition (with
mean true positive and true negative rates of above 90%, using correctly
detected faces only) seem to be reliable enough for further usage in our pan
shot face unlock research, this standard approach to face detection seems to
be too error prone (with detection rates down to 60%) – which consequently
decreases the face recognition rate as well. Therefore, we address more robust
and reliable approaches to finding faces in images from different perspectives
in the next stage.

7.3 Stereo Vision Pan Shot Face Recognition Eval-
uation

In this section we introduce a pan shot face unlock approach based on stereo
vision, which was first presented in [63]. Based on improved face recogni-
tion, we have now identified Viola and Jones face detection as delivering
unsatisfying results, especially when used within the mobile domain. Un-
even normalization, false negative and false positive detections decrease the
consecutive face recognition results. Therefore, to the pan shot face unlock
approach include the usage of range data for face detection and segmenta-
tion as well as for subsequent face recognition. We obtain range data from
stereo cameras built into the mobile device by using stereo vision algorithms.
In preparation to face detection and segmentation, we assemble range tem-
plates for multiple perspectives around the user’s head. We then perform
face detection and segmentation using sliding window template matching
and the range template of the corresponding perspective. Finally, we evalu-
ate based on range images contained in the u’smile face database.
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Figure 7.8: Overview of the stereo vision pan shot face unlock system.

7.3.1 Method

For our stereo vision pan shot face unlock (see figure 7.8), we first record
grayscale stereo images of the user’s head at multiple angles, along with
gyroscope sensor data for each pair of images. For a pan shot of 180∘, we
record nine such image pairs (one pair for about each 22.5∘). Using stereo
to range algorithms, a range image can be derived from each stereo camera
image pair. We use block matching stereo correspondence algorithm imple-
mented in OpenCV [110] as our stereo to range approach – which delivers
unsatisfying results (see figure 7.9) the resulting range image has large areas
not covered with range information (displayed as white areas). Therefore,
the further evaluation of our approach is done on the basis of precalculated
range images taken out of our face database, as described in section 6.2.

For processing face images, the face-related information of the image
should be cropped first. In our approach, we use range based face segmen-
tation – searching and cutting out faces in a range image – as described
in section 7.3.1. Based on segmented grayscale and range face images and
their device-angle information at the time of recording, face recognition is
performed. For grayscale and range faces and for different perspectives, we
use different classifiers. As classifiers, we use Support Vector Machines [143]
and Neural Networks [132] for face recognition, as described in section 7.3.1.

Range Face Segmentation

Face recognition should be performed on basis of the grayscale and range
input images. To only pass face related data to the classifiers, the face has
to be extracted from the image first. One approach to extract a face from an
image is to perform grayscale based face detection, such as the well known
approach of Viola and Jones [186] with Lienhart and Maydt [115]. In our
previous work [65], this approach resulted a) in a notable amount of false
positives/negatives, specially for the profile perspective [158], which causes
the classifiers to already learn wrong data, and b) in having not face-related
information (background) around the corners and borders of the extracted
area.
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(a)

(b)

Figure 7.9: Range image created using a mobile device stereo camera image
pair from a) frontal and b) profile perspective, using the OpenCV implemen-
tation of a block matching algorithm.

Hence, many different approaches for more precise face segmentations
have been proposed, such as [126, 151, 167, 168]. For our pan shot face recog-
nition, we rely on a simple, but for our needs yet effective range-template
based face segmentation:

1. A coarse person segmentation removes those parts of the image, which
have a bigger distance to the camera than a predefined threshold value.

2. The human face is searched in the range image, using an "average
human face range template" in combination with a sliding window
approach. For each of the nine perspectives there exists on such average
human face range template (see figure 7.10).

Figure 7.10: Average human range templates for all nine perspectives.
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3. Finally, for the best fit of the template in the image, the known area
of face in the template is cut out for both the grayscale and the range
input image. This results in both one segmented grayscale and range
face image (see figure 7.11).

These face segmentation results are not fully accurate, as some minor
areas of the faces are missing, and some not face-related information is still
included in the extracted faces. Still, the quality of our face segmentation
results is good enough for the results to be processed by classifiers, as de-
scribed in the next section.

(a)

(b)

Figure 7.11: a) Frontal and b) side grayscale and range input images, and
their corresponding range based segmented faces.

Face Recognition

Based on the obtained grayscale and range faces from face segmentation,
along with the device rotation angle at the time of recording, face recognition
is performed. We use different classifiers for grayscale and range images, and
for each of the nine perspectives. As face recognition classifiers we again use
Support Vector Machines (SVM) [143] and Neural Networks [132]. To find
a well adjusted parameter configuration for our recognition, we perform a
search for the number of neurones in the hidden layer of the feed forward
neural network, and a grid search for the correspondent SVM parameters,
as suggested by Hsu et. al. [94].
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7.3.2 Test Setup and Results

Training and Test Procedure

The recognition is done as binary classification. For each of the 30 subjects,
the face images of the test subject, recorded at a certain angle, represent
the positive class, and the images of all other people of the same angle are
assigned to the negative class. This leads to the positive class being 1

29 of
the negative class size. The classifiers are trained with 60% of the data of
each the positive and negative class (train set). The remaining 40% of the
data (test set) are explicitly used to measure the performance of the best
classifiers in the end, see section 7.3.2.

Neural Networks: Training for the feed forward neural networks (FFNN)
is done as follows: for each angle, subject and classifier, 10 neural networks
are trained with the correspondent part of the rtyain set. 30% of the data
are used for training the neural networks, 12% percent to perform cross
validation to stop the training, and the remaining 18% to evaluate the 10
generated neural networks against each other. The network with the best
performance is evaluated using the correspondent part of the train set then.

Support Vector Machines: Training for the Support Vector Machines
is done as follows: for each angle, subject and classifier, one support vec-
tor machine is trained using the correspondent part of the train set, and
evaluated on the correspondent part of the test set then.

Recognition Results The classification results of the best performing
support vector machine with linear kernel and radial kernel, and best per-
forming neural networks (see table 7.3) are shown in the tables for range
and grayscale classification results. The corresponding boxplot provides an
overview of true positive and true negative classification results for both
range and grayscale faces for all perspectives combined (see figure 7.12).

Nr. Classifier Neurons Kernel Cost Gamma
1 FFNN 10 – – –
2 FFNN 17 – – –
3 FFNN 25 – – –
4 SVM – Linear 1 –
5 SVM – Radial 1 0.01

Table 7.3: Classifier parametrization.

The results show clearly: the range based face recognition performs
slightly worse over the grayscale face recognition. For all classifiers – ex-
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Figure 7.12: Face recognition results, all perspectives combined: for range
a) true positives and b) true negatives, and grayscale c) true positives and
d) true negatives.

cept of two – the median is 1, but for the mean and first quartile, a clear
distinction to the favor of grayscale face recognition is visible: the first quar-
tile of true positive rate for range classifiers is at maximum 87.5%, compared
to at least the same value for grayscale classifiers. As the positive class is
much smaller in size than the negative class, true negative results are bet-
ter overall. Again, grayscale performs slightly better than range: the first
quartile goes down to 99.57% for three range classifiers, while going down
to the same value for one grayscale classifier only. The best performing clas-
sifier (SVM with linear kernel) has a mean true positive rate of 93.89% for
range faces, which is slightly lower than the mean of 96.85% for grayscale
faces. The true negative rate of 99.95% is again slightly lower than the true
negative rate of 99.97%. Still, the overall recognition rate obtained by this
classifier indicates that range based pan shot face recognition is possible and
can be combined with grayscale face recognition results for further usage.

We therefore argue that using additional range faces for pan shot based
face unlock will be a feasible approach – even if our range face recognition
results are slightly worse over the grayscale recognition results. The slightly
worse range recognition rate will be offset by the increased effort, which an
attacker will have to accept in order to obtain the additional range data of
the user’s face.
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7.3.3 Discussion

Using range template based detected and segmented faces, we achieve a
mean true positive face recognition rate of 93.89% for range and 96.85%
for grayscale face images, and a true negative rate of 99.95% for range and
99.97% for grayscale face images. These results indicate that range based face
recognition can be used along with grayscale face recognition in a pan shot
face unlock scenario. This will increase the amount of required data – and
therefore the effort an attacker will have to accept to obtain this data – in
order to successfully circumvent a grayscale and range pan shot face unlock
system. In the next stage we focus on improving the range template based
face detection and segmentation used within our toolchain, with focus on
obtaining more precisely segmented faces.

7.4 Improving Range Face Segmentation for Pan
Shot Images

In this section we describe improvements to the range template based ap-
proach of detecting and segmenting faces, which were first presented in [64].
The improvements include increase precision during range template creation
by semi-automatically normalizing face images prior to template creation
and increased robustness when matching the template with range images,
obtained by an improved matching heuristics. Additionally, we address range
images still containing a certain amount of background information in this
implementation. We further introduce the optional extension of precisely
segmenting a face along its actual contour using GVF snakes – instead of
cutting out along the corresponding template border. As for previous im-
plementations, we evaluate our improvements using the grayscale and range
face images contained in the u’smile face database.

7.4.1 Method

Our range face detection and segmentation approach (see figure 7.13) per-
forms an initial background removal on input range images. Then, it matches
average head range templates of different perspectives to given range images
in order to find the most probable head position. As soon as we know the
head position, we can already perform an approximate segmentation of the
face, using the average head range template contour. As this contour has
no possibility to fit the actual, individual face actual contour, we addition-
ally utilize GVF snakes to precisely segment the face in grayscale and range
input images. Using segmented faces as input to face recognition, we mea-
sure the quality of our detection and segmentation using classifiers for each
perspective and test subject.
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Figure 7.13: Range face segmentation test setup with optional background
removal and GVF snake face contour segmentation.

Range Face Template Assembly

This section describes the semi-automatic creation of average head and torso
range templates from range images4. The template creation toolchain is
structured as follows: we first perform a coarse background segmentation
to discard information not related to the human face and body. We then
normalize the head positions so that they are roughly equal in all images.
Finally, we create a) average range images, which represent the average
range to the subject, and b) “hit count” templates, which – for each pixel –
represent the amount of images in which subjects had range information
present.

The template creation is not intended to be performed on the mobile
device and has to be done only once for each perspective from which face
detection should be performed afterwards.

Coarse Background Segmentation In order to only use range informa-
tion related to the human head and torso for template creation, we discard
all range values bigger than a threshold 𝛼. This requires all range images
used during template creation to be recorded from roughly the same camera-
subject distance, as it is the case with the u’smile face database. Further,
𝛼 is perspective-dependent: therefore we use histograms of the range value
distribution of all images for each perspective to determine the correlating
𝛼. The smallest range values (first peak) represent the head and torso, the
farthest range values represent background information. Therefore we define
𝛼 after the first peak (see figure 7.14).

Head Position Normalization After coarse background segmentation,
we roughly center the head positions in the range images. Therefore we
search the four outer head boundaries and align them along the image center.

To find the top boundary, we search from the image top for the first line
containing at least 𝑁𝑡 range values. 𝑁𝑡 can be adjusted to avoid outliers –
e. g. for our implementation we used 𝑁𝑡 = 40. As this line lies beyond the top

4Assuming heads have been normalized to the same size and rotation, as if the images
would have been recorded upright and from the same camera-to-subject distance for all
participants.
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Figure 7.14: Range value distribution of images in the 0∘ perspective with
𝛼 marked bolt.

of the head, we go back up 2% of the image height to be sure that all range
information is included. The resulting y-coordinate is the head top head
boundary. We assume the head bottom boundary lies ℎ pixel beyond the
found top boundary, with ℎ being hand-picked from the range [100, 135] de-
pending on the perspective. For frontal perspectives the chin is nearly in the
same height as the neck. Therefore a smaller ℎ can be used, as the smallest
horizontal area filled with range information is higher than in the portrait
perspectives, where the chin is beside the neck and cannot be ignored. To
find the right and left boundaries, we now crop the image to the top and
bottom boundaries in order to discard range information correlated to the
torso. Then we use a similar approach as for finding the top boundary: from
the image borders on each side we search for the first column containing
at least 𝑁𝑠 range values, with 𝑁𝑠 = 70 in our implementation. Again, we
then go back 2% of the image width towards the image borders for including
all relevant range information5. As we now know the four head boundaries
(with the boundaries central point being the head center point), we can a)
shift the center points of all heads of a perspective to the same position and
b) cutout the heads (see figure 7.15).

Template Assembly Using the head position normalized range images,
we can now create four range templates per perspective: a “hit count” torso
and face template and an average range torso and face template. The hit
count templates represent the amount of images per perspective with range
information present at a certain pixel. E. g. as we have at most 620 images
per perspective in our test data set, the value range of a hit count template
is [0, 620] in our implementation. The average range templates represent the
average range information of all images per perspective. We do not consider

5As our test data contains an artifact in portrait perspectives, we have to perform an
additional artifact removal in our evaluation implementation at this point (see section
7.4.2)
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(a) Central position (b) Boundary area

Figure 7.15: Head position normalization with a) marked central point and
b) a head cut out by its found boundaries.

zero values (=background) for the template creation, therefore the range
value at a certain pixel is the average of all images only having a foreground
value present. The face templates are composed out of the range images
cropped to the face areas determined using the head position normalization.
The torso images are composed out of the normalized, not cropped range
images. We note that template matching conceptually can be performed
based on average range templates as well as hit count templates. In our
experiments we achieved worse results throughout using the average range
templates and therefore describe our approach using the hit count templates
only.

We crop the torso templates to a 300 × 300 px area around the users
head. These cropped torso templates are used during the first stage of tem-
plate matching which determines the coarse position of the user’s head in a
range image. The smaller face templates are used during the second stage of
template matching, which aims to improve the accuracy of the face position
found during the first stage. Therefore, the second stage template matching
is performed in a small area around the initially found face position.

Figure 7.16 shows two examples of head position normalized hit count
and average range images. The larger marked region is the 300 × 300 torso
template used for coarse matching, the smaller the face template for fine
grained matching.

Face Template Matching

We perform face template matching based on sliding window principle and
template scaling, so that different face sizes and positions can be matched.
Our matching approach further consists of two (basically identical) steps:
coarse and fine matching, using the created torso and face range templates.
During coarse matching, a rough estimate of the head position is detected
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(a) Hit count (b) Average range

Figure 7.16: Average torso and face images from frontal and profile per-
spective. Torso and face templates are marked white.

using different scalings and positions of the torso templates. Based on the
coarse position we then perform fine matching in the surrounding area using
the face templates (using finer sliding window steps with different template
scaling and positions again) in order to improve the accuracy of the found
face position.

Comparing how well a template matches a certain area in a range im-
age is done using a template matching metric. Normalizing the template and
range data depends on the grade of preprocessing applied to the range input
data in order for the metric to work correctly. The metric and normalization
for range data without background (see section 7.4.1) is applied in case the
background has been removed from input range images (as it has been ap-
plied to range images used during template creation). In case no background
removal has been applied the metric and normalization for range data with-
out background (see section 7.4.1) are applied instead. We implement and
evaluate our approach with range data with both background still present
and removed (see section 7.4.2).

During our experiments we discovered that searching for correlations be-
tween hit count templates and range images is more robust than comparing
range values of range images and average range templates. Therefore we
only make use of hit count templates subsequent to this point – although
average range images might be used as well with different metrics.
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Template Matching Metric: without Background This range data
and template normalization requires a background-free range image — simi-
lar to the images used during template creation. Initially, we convert the hit
count template 𝑇 to the range [−1, 1] using 𝑇 = 𝑇 −𝑚𝑖𝑛(𝑇 )

𝑚𝑎𝑥(𝑇 )−𝑚𝑖𝑛(𝑇 ) . For matching
𝑇 with an actual range image 𝐼 we have to normalize 𝐼 to the range [−1, 1]
too, by setting all pixels containing no range information (background) to
−1, and all pixels containing range information to 1.

As a) our metric essentially is a multiplication of the normalized hit
count template 𝑇 with the normalized range image 𝐼 and b) 𝑇 by now most
likely contains more background (−1) than foreground (1) information, the
following effect could be observed: as 𝑇 contains a bigger background than
foreground region it will give a bigger weight to matching the background
than to matching the foreground. Therefore not matching the background
would lead to a stronger decreased metric than not matching the foreground.
This could lead to false detections with large background regions being al-
most perfectly fitted, but the smaller foreground region being missed com-
pletely. Consequently we have to correct 𝑇 before matching, which we did
by scaling all values > 0 so that 𝑇 sums to 0. As side effect the range of 𝑇
is no longer [−1, 1], but [−1, 𝑁 ] with 𝑁 > 1.0. e. g. for the perspective of 0∘

we obtained a template range of [−1, 3.0036].
After bringing the range image 𝐼 and hit count template 𝑇 to the re-

quired range, the metric 𝑀 can be computed (see equation 7.1). The current
template area 𝐴(𝑇 ) is used to normalize 𝑀 independently of the size of the
currently matched area. Regions outside the current size of template 𝑇 are
not taken into account for 𝑀 . Higher values indicate better matches.

𝑀 = 1
𝐴(𝑇 )

∑︁
𝑥,𝑦

𝑇𝑥,𝑦 · 𝐼𝑥,𝑦 (7.1)

Figure 7.17 shows the best match found by the template matching met-
ric in a range image without background information. The regions marked
white are the best matched position with the torso template (big) and face
template (small).

Template Matching Metric: with Background In case background
removal is not applicable for range images, we use this range data and tem-
plate normalization which is slightly adapted to work with background infor-
mation still present in images. Before actually matching template and range
image, errors in the range image (regions without information) should be
corrected. This is particularly important when matching range images still
including background information, as the subsequent application of GVF
snakes will likely deliver erroneous results caused by these errors. Especially
errors directly at the borders of the face need to be corrected. For the test
data used in our evaluation, the real range information of these unknown
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(a) Coarse matching (b) Fine matching

Figure 7.17: Best matched face area for coarse and fine matching on range
images for a frontal and profile perspective with background information
removed

regions next to the face would be “background”. Therefore we apply a hole
filling algorithm which fills up these unknown regions with background in-
formation.

As for matching range images without background, we first normalize
the hit count template 𝑇 to the range [−1, 1], then scale values > 0 so that
𝑇 sums to 0. As the range image 𝐼 contains background information, we
cannot apply a simple binarization as for matching range not containing
background information. Instead we also normalize 𝐼 to the range [−1, 1].
This requires a strong rise in range from the head (foreground) towards the
background, so that the foreground will more likely contain positive values,
and the background more likely negative values. We then compute the metric
using equation 7.1.

Figure 7.18 shows the best match found by the template matching metric
on a range image including background information. In comparison to fig-
ure 7.17 the results are approximately the same. In case background range
values are overall increasing/decreasing towards a certain direction, small
shifts along this direction are to be expected.
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(a) Coarse matching (b) Fine matching

Figure 7.18: Best matched face area for coarse and fine matching on range
images for a frontal and profile perspective still containing background in-
formation

Sliding Window and Template Scaling We perform face template
matching in two stages: coarse matching using the torso template and fine
matching using the smaller face template — both from the corresponding
perspective. In each stage we perform template matching in a sliding window
principle with scaling templates to different sizes.

In the first stage we start with sliding window step sizes 𝑆𝑥 and 𝑆𝑦 in x-
and y-direction – with 𝑆𝑥 = 40𝑝𝑥 and 𝑆𝑦 = 40𝑝𝑥 in our implementation for
performance reasons. Within each iteration of this stage, we shift the window
by the step size through the image and compute the matching metric using
the current position of the sliding window and the template as described in
section 7.4.1 and 7.4.1. We append the matching metric result along with
template size and position to a list of metric results of this stage. After
finishing all iterations of this stage, we know the best match of the template
in its current size, given the accuracy defined by current step sizes 𝑆𝑥 and
𝑆𝑦. In order to increase the accuracy of the best template match position,
we decrease the step sizes and choose a smaller search area around the best
four metric positions for the next stage. Additionally, we extend this area
with the padding 𝑃 to ensure potentially best matches at the borders will
be included in matching results, with a 𝑃 = 4px in our implementation.
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We further use 1
10 of the new search area width/height as decreased step

size in x/y-direction. We process new stages until the step size is 1𝑝𝑥 or the
search area does not change anymore. After finishing all stages, we know the
precise position of the best match of the template inside the image – given
the current template size.

In order to best match the template in different sizes, we additionally
apply an iterative template scaling. For each template size we process tem-
plate matching as described above and memorize the best matching position,
template size and scaling factor. For the start of the template scaling we de-
fine three parameters for the scaling range: 𝑆𝑠𝑡𝑎𝑟𝑡, 𝑆𝑒𝑛𝑑 and 𝑆𝑠𝑡𝑒𝑝. In our
implementation we used 𝑆𝑠𝑡𝑎𝑟𝑡 = 0.8%, 𝑆𝑒𝑛𝑑 = 1.2% and 𝑆𝑠𝑡𝑒𝑝 = 0.1%. We
perform sliding window template matching for all these template sizes and
memorize the best matching results for each scaling. We then derive new
template scaling factors in order to increase the precision of template scal-
ing. We therefore use the scaling factor 𝑆 with which the best match was
obtained and derive the new scaling parameters as stated in equation 7.2.

𝑆𝑛𝑒𝑤_𝑠𝑡𝑒𝑝 = 𝑆𝑠𝑡𝑒𝑝

10
𝑆𝑛𝑒𝑤_𝑠𝑡𝑎𝑟𝑡 = 𝑆 − 2 · 𝑆𝑛𝑒𝑤_𝑠𝑡𝑒𝑝

𝑆𝑛𝑒𝑤_𝑒𝑛𝑑 = 𝑆 + 2 · 𝑆𝑛𝑒𝑤_𝑠𝑡𝑒𝑝 (7.2)

We stop template scaling iterations as soon as scaling does not change
the window size any more or the matching metric results are the same for all
template positions. After finishing sliding window template matching with
template scaling we know the match of differently scaled torso templates in
the range image in terms of template position and size.

The next step is to search for the exact position of the head inside the
torso area. We therefore repeat the process using the head template instead
of the torso template and only searching within the area found by torso
template matching. In our implementation, we use step sizes of 40px for
head template matching – as we did for torso template matching before.
After finishing head template matching including different template sizes,
we know the head location in the image in terms of rectangular size and
position. We crop the image to this area for consecutive face segmentation.

Face Segmentation Approaches

After performing range template based face detection we know the posi-
tion of the face in the image. As next step we segment this face (discard
non-face related information). This can either be done by using the range
template contours, or by applying GVF snakes to precisely segment along
the individual face contour.



7. Implementations and Results 80

Figure 7.19: Faces cut out by the hit count template contour

Template Segmentation A computationally fast and easy to implement
approach which delivers feasible results is to segment the face along the hit
count template contour. As the hit count template is usually larger than
the detected face (it contains information in all pixels at which at least
one range image contained information during template creation), we only
consider pixels for which at least 𝑁% of range images contained information.
This leads to the hit count template contour getting smaller – and fitting the
average face better. Again, 𝑁 depends on the perspective: for the perspective
of 0∘ we use only hits with at least 𝑁 = 50% appearance in all images of
this perspective. For the perspective of ±22.5∘ perspectives we use 𝑁 = 60%
and for all other perspectives we use 𝑁 = 70%. When cutting out along the
contour of pixels fulfilling the 𝑁% criteria of the hit count template (without
using snakes to exactly match the contour), we still can segment faces quite
exact (see figure 7.19).

These faces can be used directly as input to face classifiers. Although this
approach is faster – as no further segmentation computation is necessary – it
has the major drawback of not fitting the actual face contour, as it only takes
into account the “average face contour” from the corresponding perspective.
Therefore, we additionally use GVF snakes to fit the cut out area precisely
to the individual’s face contour in the next section.

GVF Snakes Segmentation Snakes are introduced by Kass et. al. [103]
as active contour models that create a line towards features – such as edges –
based on internal and external constraint forces. Xu and Prince [196, 197]
propose gradient vector flow (GVF) as external force for snakes based on a
diffusion of the gradient vectors of an feature edge map.

We apply GVF snakes to precisely cut out the face on the individual
contour. We position the initial GVF snake on the contour of the prepro-
cessed hit count template from section 7.4.1 – exactly on the contour, on
which a cut out using the template only would take place. From there, the
GVF snake should evolve towards the face actual contour. For this purpose
we first create an edge map of the area around the face in the range im-
age, which was found using template matching [37]. Based on the edge map
we calculate the GVF field, acting as external forces which pull the snake
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towards the edge. As GVF parameters we use a regularization coefficient
𝜇 = 0.2 and 80 iteration steps. We further specify the following parameters
for the internal GVF snake calculation: 𝛼 = 0.05, 𝛽 = 0, 𝛾 = 1 and 𝜅 = 0.6.
This results in a trade-off between a quite precise edge matching and fast
calculability (see figure 7.20).

(a) Edge map (b) Initial active contour

(c) Snake deformation (d) Final GVF snake

Figure 7.20: Step-by-step results for precisely fitting a face range contour,
from a) edge map up to d) GVF snake.

After performing additional GVF snake segmentation, we naturally ob-
tain more precisely segmented faces, which contain less background infor-
mation than with cutting out faces at the hit count template contour (see
figure 7.21). Again, these faces are used as input to face classifiers in the
next section.

To wrap up: in order to perform range template matching we at first
assemble templates of the face and torso area from different perspectives.
We therefore first remove background in range images, second perform head
position normalization and finally create hit count templates from the range
images. Before performing template matching, we normalize input images
not containing background information slightly differently than range input
images still containing background images in order to handle both variants.
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Figure 7.21: Faces segmented by GVF snakes after performing range tem-
plate matching.

We then perform range face detection based on two staged sliding window
template matching and template scaling, using the torso template in the
first, the face template in the second stage. In each template matching stage,
we recursively reduce the granularity of our search by decreasing the sliding
window step width in areas of interest. We do this until we have found the
most likely position for the torso in the first stage and the face in the second
stage, inside the region marked by the torso.

7.4.2 Test Setup and Results

For evaluation, we implemented our face segmentation approach in Matlab.
As test data we use the 2013’ Kinect color and range images of the u’smile
face database [62]. Using our implementation, we perform face detection and
segmentation in 4 different setups:

1. With initial image background removal and without performing GVF
snake segmentation.

2. With initial image background removal and with performing GVF
snake segmentation.

3. Without initial image background removal and without performing
GVF snake segmentation.

4. Without initial image background removal and with performing GVF
snake segmentation.

Not performing initial image background removal represents cases in
which background removal is not possible for various reasons. Based on the
segmented faces we then perform face recognition on range and grayscale
images separately and compare our results to previous research [63].

Test Data Artifact Removal

For the image acquisition of the u’smile face database recorded in 2013,
a stick behind the head was used to adjust the distance between Kinect
sensor and each person. For the head position normalization we need to
consider this stick at the back of the head. In the portrait perspectives the
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side boundary without the stick is found in the same way as for the frontal
perspectives. Using this boundary plus a width of 140px the main stick is
removed from the image and only the head plus a small additional stick
remains. After that we remove the remaining stick by searching the first
appearance of 70 range values from the side with the stick, because the
remaining stick height is smaller than this threshold and the back of the
head boundary is found.

Face Classifiers

Based on segmented faces we perform face recognition on grayscale and
range faces separately. Therefore, we treat our face recognition as a binary
classification problem. When creating the positive and negative data classes,
all images of the particular subject form the positive class, and all images of
the other subjects form the negative class. As we have 30 people in our test
data, we a) compute 30 such binary classification problems and b) have a
negative class being 29 times the size of the positive class. For this reason, the
recognition rates for the negative class are expected to be better than those
of the positive class – we therefore only state the true positive recognition
rates in graphs. We use 60% of the data of each class for training and cross
validation. The remaining 40% test data are used exclusively for measuring
the final recognition rates. For performing face recognition based on our
range template based face segmentation results, we use a Support Vector
Machine (SVM) from LibSVM [39] and perform a parameter grid search as
suggested by Hsu et. al. [94]. It turns out that the best classifier for our data
is a linear SVM with cost of 10.

Results

In comparison to the face detection rate of 77.63% from previous research
on the u’smile face database [62], which is based on the OpenCV implemen-
tation of Viola and Jones [115, 186], we achieve a 100% correct detection
rate with all setups of our range template based approach, as we correctly
detect all faces.

The face recognition results (see figure 7.22 and 7.23) clearly show that
precise face segmentation using GVF snakes does not improve results (re-
spectively does not improve them significantly). When using initial range im-
age background removal, the average true positive/true negative recognition
rates without GVF snakes are 99.78%/100% for color and 98.21%/99.99%
for range, compared to 99.33%/100% for color and 98.7%/99.99% for range
with GVF snakes. When looking at face segmentation without perform-
ing initial background removal, the average true positive/true negative face
recognition rates without using GVF snakes are 99.06%/100% for color
and 97.4 %/99.98% for range, compared to 98.61%/100% for color and



7. Implementations and Results 84

1 2 3 4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(a) Colored faces
1 2 3 4

0.
4

0.
6

0.
8

1.
0

(b) Range faces

Figure 7.22: Boxplot showing average true positive face recognition rates
using segmented faces in a) color and b) range with setup 1-4.

96.82%/99.97% for range when using GVF snakes. Also, using range im-
ages is on average less reliable than using grayscale images.

We believe the reason for GVF snakes not improving results further is
that a) segmentation based on cutting out the head along the template bor-
ders already showed good results and b) the range images contain undefined
areas at or next to the real face contour from the start. These range errors
lead to an edge map showing a contour not completely matching the real
face contour (such as the lower left area in figure 7.20). Therefore, the GVF
snake does not completely match the actual face contour, but also includes
areas of range error – which vary across the subjects and are learned by face
classifiers along with the real face features. We believe that GVF snakes face
contour segmentation will result in improved face recognition rates (over a
cutout along the template contour) when using more accurate range images
in the first place than the Kinect can currently deliver.

Altogether, our current face recognition results are still significantly bet-
ter than from previous research based on grayscale images only and Viola
and Jones face detection with a rectangular crop area [62]. When passing
all detected faces (including false positive detections) to the classifiers, the
average true positive/negative recognition rate was 86.22%/99.57%. Even
when only passing correct detections to the face classifiers, the average
true positive/true negative face recognition rate using grayscale images was
97.81%/99.98% – which still is worse than with our current approach. This
likely correlates with background information still present in face images
and worse normalization in terms of face size and position for the previ-
ous approach. We further achieve improved results compared to previous
research also based on range template matching [63], where the average true
positive/true negative recognition rate was 96.85%/99.97% for color and
93.89%/99.95% for range images – with the most important improvement
being the precise data normalization during template creation and matching.



7. Implementations and Results 85

−9
0.

0°
−6

7.
5°

−4
5.

0°
−2

2.
5°

0.
0°

22
.5

°
45

.0
°

67
.5

°
90

.0
°

0.88

0.90

0.92

0.94

0.96

0.98

1.00

−9
0.

0°
−6

7.
5°

−4
5.

0°
−2

2.
5°

0.
0°

22
.5

°
45

.0
°

67
.5

°
90

.0
°

0.5

0.6

0.7

0.8

0.9

1.0

(a) Background removal, without
GVF snake segmentation
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GVF snake segmentation
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snake segmentation

Figure 7.23: Boxplot showing true positive face recognition results sepa-
rated for perspectives, using segmented faces in color (left) and range (right).

7.4.3 Discussion

Our results indicate that face detection and segmentation based on range
information might be a very effective approach in general for finding single
faces in a mobile device unlock scenario. Using range template matching,
we achieve an error free face detection on Kinect color and range images of
the u’smile face database. Faces segmented by our approach are normalized
in position and size and contain little background information. As both
of these are important to face recognition, we naturally achieve better face
recognition results compared to previous research using the same data. Using
a linear Support Vector Machine as face classifier we achieve average true
positive recognition rates above 98% on grayscale and 96% on range images
from our test set.

In order to apply range template based face detection and segmenta-
tion in the mobile domain, mobile devices must be capable of taking such
range images, e. g. with stereo cameras. Some current smartphones already



7. Implementations and Results 86

contain such cameras mounted on the back side – for more convenient us-
age they would be required to contain stereo cameras on the front side too.
When using stereo cameras, a further prerequisite to successfully perform-
ing a range based face unlock in the mobile domain are computationally
fast and robust stereo-to-range algorithms that generate range images with
only a small amount of erroneous areas. As many existing stereo vision algo-
rithms are either computationally too intensive or deliver inadequate results
when applied on data recorded with typical mobile device quality, there is a
strong need for improved stereo vision algorithms applicable in the mobile
domain as necessary groundwork to successful mobile device stereo vision
face unlock.



Chapter 8

Conclusion

We are working on a mobile device unlocking approach which uses all data
available from recording a mobile device pan shot around the user’s head.
Our approach is intended to on the one hand increase the level of security
which is realistically applied in practice during unlocking, while on the other
hand retaining high usability due to fast usage and not requiring the user
to remember an unlocking secret. In comparison to classical mobile device
unlocking approaches, our approach is intended to be shoulder surfing re-
sistant by design – as it is an inherence based approach in contrast to a
knowledge based approach. In comparison to face unlocking approaches us-
ing frontal face information only, our approach is designed to be harder to
circumvent using photo attacks – as an attacker would be required to obtain
facial information from multiple perspectives, such as obtaining a 3D model
of the user’s head. In order to develop a high quality toolchain to conduct
a pan shot based mobile device unlock, we proposed our approach in four
stages, each containing an implementation and evaluation in order identify
weaknesses and improve the approach within the next stage.

Our initial implementation uses a smart phone with gyroscope sensor
and built-in camera in order to evaluate feasibility of a mobile device pan
shot face unlock. The pan shot data aggregation is based on grayscale images
and gyroscope data in order to distinguish between different perspectives.
For face detection we utilized Viola and Jones frontal and profile Haar-
cascades in order to detect faces from all perspectives from which images
have been recorded. For face recognition we utilized Eigenfaces classifiers –
one classifier per perspective, with seven perspectives in total. Within our
evaluation we mainly identify Eigenfaces for recognition as being to unre-
liable for further usage in mobile domain face recognition. For our second
implementation, we therefore exchange Eigenfaces for recognition with using
neural networks and support vector machines for face recognition, but keep
Viola and Jones based face detection. Again, we use one face recognition
classifier per perspective, so that pan shot data is classified by nine classi-

87



8. Conclusion 88

fiers in total. We further evaluate our pan shot face unlock toolchain with
a larger test set. Within this second implementation, we identify our face
recognition approach to be sufficient for further usage in future research,
but identify using Viola and Jones face detection as being to unreliable
for usage in a mobile device pan shot scenario – especially because of a)
many incorrect detections, b) segmented faces being normalized unequally
and containing a variable amount of background information and c) only
distinguishing between frontal and profile face detection instead of all nine
used perspectives. For our third implementation, we consequently develop a
novel face detection approach for mobile device pan shot face unlock, which
is based on range images and is intended to work from any perspective. With
using range images, we now require a mobile device with stereo camera and
a gyroscope sensor in order to derive range images from using stereo vi-
sion. We create range templates from multiple perspectives and match pan
shot images with the template of the corresponding perspective to detect
and segment the user’s face. We keep neural networks and support vector
machines as face recognition classifiers to evaluate our approach. Results in-
dicate that using range information for finding and segmenting a single face
might in general be a good approach – but we also identify the template
creation and matching process requiring further investigation in order to
improve the result quality. Consequently, for our fourth and last implemen-
tation we focus on improving the pan shot face detection and segmentation
approach based on range images. We semi-automatically normalize range
images for template creation. We further evaluate improvements based on
prise face segmentation using snakes – which turn out to not improve results
over template border cutout based segmentation, as range images are too
erroneous for applying snakes themselves.

Therefore, one point left open by the implementations of this thesis is
the usage of stereo vision algorithms applicable within a stereo vision mo-
bile device pan shot unlock scenario. The stereo vision approaches utilized
on the mobile device during the implementation were insufficient, as they
delivered too erroneous information for usage in facial recognition tasks.
Other, openly available stereo vision algorithms are often computationally
intensive (but could possible be accelerated using specialized hardware in
mobile devices). Therefore, future research will – besides others – need to
comprehensively evaluate novel stereo vision approaches for feasibility within
our approach. Besides focusing on stereo vision algorithms, the developed
mobile device pan shot face unlock toolchain (using range images for range
template matching based face detection and segmentation, support vector
machines and neural networks for face recognition and majority voting for
obtaining a scalar recognition probability for unlocking/not unlocking the
device) requires further, extensive tests, with no longer using ideal/limited
test set recording conditions. These tests need to be conducted using data
actually recorded with mobile devices to obtain the large variance (in terms
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of e. g. illumination, image quality, changed style) typical for data recorded
with mobile devices. Consequently, an extension of the u’smile face database
by large data sets recorded with mobile devices in very diverse situation is
the logical next step for evaluation and eventual improvements to the current
pan shot unlock toolchain. Another point left open by our current approach
and implementation is the device automatically recognizing users wanting
to start and end a pan shot by pointing the camera/cameras of their mobile
device towards one ear. Future research might address this issue – but as it
is relatively easy for users to press a button on the mobile device in order
to start/end a pan shot, this is considered to be a minor issue.

By now, our face detection and recognition does not check if a recorded
image actually contains a face before processing it. In case of an image being
presented to the camera which does not contain a face at all, the area most
likely containing a face will be segmented and handed to face recognition
nevertheless. We did not quantify the security impact of such images being
presented for authentication yet as they will likely be classified as originated
by the negative class, but future work will need to incorporate a check for if
an image actually contains a face before processing it within face recognition.
This could be done e. g. by adding non-face images to negative class used
for training face classifiers or with using a separate classifier deciding upon
an image area segmented after face detection actually contains a face.

Further, face classifiers of different perspectives do not check for pan shot
data actually being originated by the same pan shot. Therefore, an attacker
would conceptually be able to conduct a photo attack by presenting images
to the camera showing the authorized user from correct perspectives – but
which were recorded in totally different situations. Such a pan shot photo at-
tack could be based on obtaining a large amount of images of the authorized
user (e. g. by fetching them from a social network) and then selecting im-
ages showing the user from the required perspectives to obtain a “pan shot”
image series. Further, the attacker would need to rotate the device while
(automatically) presenting the correlated images to the camera – which will
be the easiest part of the attack. This attack can be prevented by checking
that images used for different perspectives were actually recorded within the
same pan shot, or e. g. by recording a video stream instead of single images
and a check for drastic changes within frames changes.

Another potential attack to pan shot face unlock is based on deriving a
3D head model from images showing the authorized user’s face from different
perspectives (as done recently in [19] with using a single image using Face-
Gen modeler1). At least with only using grayscale information during the
face recognition process, we expect this head model attack to have a huge
potential. Texture information extracted from images could be projected
onto an arbitrary head model, which could then e. g. be displayed in rota-

1http://www.facegen.com/modeller.htm

http://www.facegen.com/modeller.htm
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tion on another mobile device and used for conducting a head model attack.
We expect our approach to be less prone to the head model attack when
using range information – as range face information a) cannot be obtained
as easily as grayscale face information and b) deriving exact range informa-
tion would require a huge amount of grayscale images or video streams from
multiple perspectives recorded with high quality.

In order to increase face recognition accuracy, bagging and boosting of
classifiers from same perspectives might be in the focus of future work too.
Besides the challenges especially present in the mobile domain, such as large
diversity of illumination conditions or bad image quality, there exist further
challenges currently focused by non-mobile face recognition – such as distin-
guishing between identical twins [144]. These challenges also apply for our
mobile device unlocking scenario, and therefore will have to be addressed at
some point in the future too.
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